3-Phase Balanced Circuits

3-Phase Delta

$P=1.73 E_{L-L} \operatorname{lp} \cos \theta=\frac{3\left(E_{L-L}\right)^{2}}{Z}$
$\mathrm{Z}=\frac{1.73 \mathrm{E}_{\mathrm{L}-\mathrm{L}}}{\mathrm{L}}$
$\mathrm{IP}=\frac{\mathrm{LL}}{1.73}$

- The current in each element is equal to the line current $I_{\llcorner }$divided by $-\overline{3}$.
- The voltage across each element is equal to the line voltage $E_{\text {-.t. }}$
- The impedance of each element is equal to $-\overline{3}$ times the voltage across each element divided by the line current.
- The voltage across the elements are 120P out of phase.
- The currents in the elements are 120p out of phase.
- The power is equal to $-\overline{3}$ times voltage across each element times the current $/\llcorner$ times $\operatorname{COS} \Theta$.
$P=$ power in watts
$\Theta=$ phase angle in degrees

3-Phase WYE

$P=3 E_{L-N} \operatorname{ll} \cos \theta=1.73 \mathrm{ELLL}_{\mathrm{L}} \cos \theta$
$\mathrm{I}=\frac{\mathrm{ELLN}^{\mathrm{N}}}{\mathrm{Z}}=\frac{\mathrm{E}_{\mathrm{L}-\mathrm{L}}}{1.73 \mathrm{Z}}$
$\mathrm{E}_{\mathrm{L}-\mathrm{N}}=\frac{\mathrm{E}_{\mathrm{L}-\mathrm{L}}}{1.73}$

$$
Z=\frac{E_{L-L}}{1.73 I_{P}}
$$

- The current in each element is equal to the line current I.
- The voltage across each element $E_{\text {L-N }}$ is equal to the line voltage $E_{\text {L. }}$ divided by $-\overline{3}$.
- The impedance of each element is equal to line voltage E_{-L} divided by $-\overline{3}$ times the line current.
- The voltages across the elements are 120p out of phase.
- The currents in the elements are 120P out of phase.
- The power is equal to 3 times line voltage $E_{\text {L.n }}$ times line current times $\operatorname{COS} \Theta$.
- For a ballanced load the current in the neutral is equal to zero.

3-Phase Open Leg

3-Phase Delta

$P=\frac{2\left(E_{L-L}\right)^{2}}{Z}$
$I_{A-C}=I_{C-B}=I_{A}=I_{B}=\frac{E_{L-L}}{Z}$
$\mathrm{IC}=1.73 \mathrm{I}_{\mathrm{A}}=1.73 \mathrm{IB}$

- The current in each non-open element is equal.
- The current in the connecting leg of the non-open elements is $-\overline{3}$ times the current in any other leg.

3-Phase WYE (No neutral)

$\mathrm{P}=\mathrm{EL} \mathrm{L} \mathrm{l}$ L $\operatorname{COS} \theta$

$I_{L}=\frac{E_{L-L}}{2 Z}$

- The current in each non-open element is equal to the line current.
- The voltage across each non-open element is equal to the line voltage divided by 2.
- The power is equal to the line voltage times the line current times COS \ominus.

