ENERGY MONITORING

Applications And Products

CR Magnetics provides the tools needed for Energy Management.

Look inside for current solutions to today's most pressing issue...

Visit us at www.crmagnetics.com Transducers . Transformers . Relays . Indicators . Displays

The Professional Energy Monitoring Company_e

3500 Scarlet Oak Blvd., St. Louis, MO 63122 Phone: 636-343-8518, Fax: 636-343-5119 Web: http://www.crmagnetics.com E-mail: sales@crmagnetics.com

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

2

Intro & Selection Guide	Company Information, Product Guide, Selection Guide	А
Data Stream	Electrical Properties Measurement with Digital Data Interface	В
Transducers	Analog Output Sensors for Current, Voltage, Power, Frequency & Power Factor	C
Relays and Switches	Current, Voltage and Process Sensing Relays and Switches	D
Indicators and Displays	Powerful Indicator Products for Power System Monitoring	E
Current Transformers	Commercial, ANSI, Split Core and Medium Voltage Current Transformers	F
Potential Transformers	Low and Medium Voltage Potential Transformers	G
Application Guides	Useful technical Information on Power Systems	H

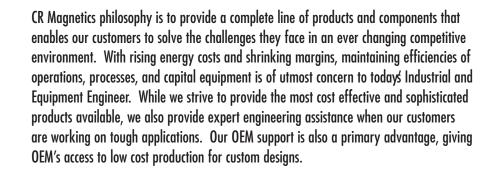
© 2008 CR Magnetics Inc. – All rights reserved

The information in this catalogue has been carefully checked and is believed to be accurate, however, no responsibility is assumed for any inaccuracies

3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com3E-mail: sales@crmagnetics.com

About Us

CR Magnetics specializes in Electrical Power Systems Monitoring


CR Magnetics, Inc. has been in operation since 1986, and is centrally located in St. Louis, Missouri, where we maintain a 40,000 square foot manufacturing facility and warehouse. CR Magnetics also maintains manufacturing and sales offices worldwide, including East Asia, Europe, and the Americas.

Shenzhen, China

Manufacturing Facility

CR Magnetics, Inc. Corporate Headquarters St. Louis, Missouri

Recognizing the need for more products and improved customer support, CR Magnetics, Inc. is now part of the **Khorporate Holdings** family of companies. The Khorporate Holdings companies are respected leaders in their industries for over 40 years. Their expertise in distribution, customer service, and manufacturing will only help CR Magnetics continue to provide top quality products, quickly and at a competitive price. CR Magnetics, Inc. has adopted the **ISO9001:2008** Quality Management System.

Current Ring Released in 1986

Today, CR Magnetics provides a complete line of sensors, transducers, and components needed in today's industry. Our new **Current Mark Indicators and Displays** are further evidence of our continued excellence. Our full line of Analog Transducers, ANSI and Commercial Grade Current Transformers, Medium Voltage Products, Power Meter and General Purpose components provide any user the tools they need to improve any application. Our engineers are ready to answer any questions, and we won't rest until we get the right product for the right job at the right price. Give us a call today, and find out why CR Magnetics are the Professional Energy Monitoring experts.

Current Mark Indicators Newest Product Release

CR Magnetics Focus on Service and Technology

CR Magnetics staff includes engineering and technical professionals who bring a century's worth of experience in the electrical monitoring and power measurement industry. This experience provides our customers with solutions in solving the most difficult application challenge.

Our fully **NIST** traceable lab consists of six testing stations, each with laboratory grade closed loop controlled power system references that are used to provide exacting baseline inputs for proper calibration of all our products. These stations can create the identical situation faced in the field by our customers, including any voltage, current, or frequency level. The shape and form of these signals can also be adjusted to provide data on how our products react in these situations. CR Magnetics also maintains the proper power meter testing equipment which is designed to meet the parallellogram method of the **ANSI** grade meters, as well as an engineering based test system to verify absolute phase angle shifts with initial inductance measurement of our sensing transformers. These stations are specifically designed to provide the correct specifications for our products when applied in unique or common applications.

All CR Magnetics parts meet the lead-free and other dangerous chemical requirements of **RoHS**. Our most popular products carry **CE**, **UL**, and **CSA** certifications. Our facilities also include the necessary equipment including high-pot testing, environmental testing, and load testing to be able to provide our customers the information and source they need when exploring custom solutions that require agency approvals. Our experience in working with certified bodies make implementing new and exciting monitoring schemes much easier and quicker.

CR Magnetics staff includes quality monitoring and assurance personnel. These personnel have no other function than to make sure our products are maintained with the highest quality level possible. All quality issues are tabulated from customers, employees, and suppliers. Documentation maintained includes customer complaints, corrective actions, and fully traceable materials from supplier through customer. Statistical process control is utilized in the winding, potting, and calibration areas, controlled by documented setups, and re-verified on a regular basis. All procedures are maintained and referenced in an industry standard quality manual.

3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com5E-mail: sales@crmagnetics.com

DATA STREAM DIGITAL TRANSDUCERS Page 11

The **DATA STREAM** series of digital transducers are some of the industrys' most advanced devices to measure and monitor electrical power systems. Available in multi-function and single function designs,

these products sense Voltage, Current, Power Factor, Real Watts, VARS, and Frequency in a single compact package. The data is then sent over an RS485 bus to other digital based systems for monitoring and controls. A simple command interface using short ASCII commands tells the device to send its data. Full user control over baud rate, scaling, and addressing is available. An optional Modbus design is also available for industry standard control and data systems. All types of electrical systems can be measured, including single,

and 3 phase systems, as well as DC systems.

ANALOG TRANSDUCERS Page 27

CR Magnetics **Analog Transducers** are cost effective devices designed to be building blocks for the designer who needs accurate and stable monitoring of electrical properties. The product line includes Voltage, Current, Power, and Frequency measuring devices. Each product is available with either a process level 0-5VDC output, or a process loop 4-20mA output. Selfpowered, loop powered, and supply powered devices are available. Calibration methods include True RMS sensing for noisy or variable frequency, as well as Average Sensing for loads run off utility power. Current sensing is available in split core designs so instrumentation can

be added without powering down electrical systems. Products can measure single phase, three phase, and DC systems.

RELAYS AND SWITCHES Page 59

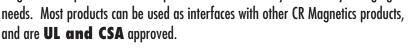
CR Magnetics **Relays and Switches** are engineered components designed to provide electrical power system sensing with a switching action output. These components are available in a wide range of configurations depending on your application needs. Proving go/no go switches, adjustable switches for limit applications, and fully adaptable relay products for safety and lockout protections. CR Magnetics also provides a full line of **AC and DC** level controls for a wide variety of applications including motors, loop alarms, and process monitoring. A wide variety of packaging includes DIN Rail mount, panel mount, and wire mounted versions.

For more advanced switching options See our DATA STREAM products

3500 Scarlet Oak Blvd.St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119Web: http://www.crmagnetics.com6E-mail: sales@crmagnetics.com

CURRENT INDICATORS AND DISPLAYS Page 77

CR Magnetics **Current Indicators** are the recognized industry standard in simple but effective electrical circuit monitoring. These indicators can be used to check the status of AC current carrying conductors, and can provide an easy method to tell the operation of heaters, motors, fans, and other AC electrical equipment without disconnecting power and physically measuring connections and equipment. AC current in a conductor induces the LED to light, indicating the presence of AC current in the conductor. Failure of the LED to indicate suggests open heater elements, broken motor leads, and failed fuses without physically measuring the circuits. Value priced and available in all-in-one and remote indicating


Solid Core & Split Core Current Transformers

CR Magnetics supplies a variety of standard Solid Core and Split Core Current Transformers designed for measuring electrical systems. These components provide the building blocks to interface most industry standard and customer designed electrical power monitoring systems and equipment. Our transformer line includes ANSI and Commercial grade industry standard parts, as well as PC Board mounted designs for custom and OEM controls. We carry an extensive line of Medium Voltage (above 1KV) products for the utility and industrial markets. Also unique to CR Magnetics are our **Power Meter** class of transformers with better than

0.2% accuracy. Finally, a line of **Ground Fault** transformers are available as well that provide accurate measurement of extremely small ground fault currents. Whatever the application, CR

Magnetics can provide the exact product to meet industry's continually changing

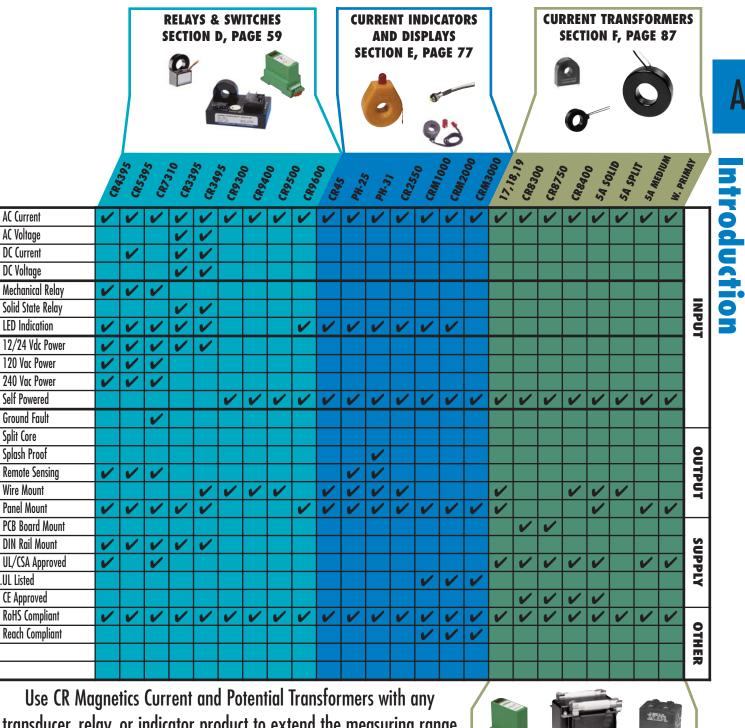
packages, these products provide payback by saving downtime and maintenance costs.

POTENTIAL TRANSFORMERS Page 121

CR Magnetics carries an extensive line of Potential Transformers that are used to monitor and measure various levels of AC Voltages. Typically modeled similarly to common power transformers, potential transformers are specially designed to provide accurate input versus output curves over a wide range of loading. Whereas power transformers are typically designed for 70 to 80 percent regulation, potential transformers are desinged for 99% or better regulation.

ntroduction

Page 87



Selection Guide

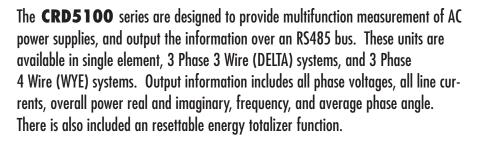
A		DIGIT	DATA S TAL TR TION P	ANSD B, PAC	UCER									SDUCI AGE 2				ļ	
ntroduction		CRD.	CRD4	CRD45	CRD61	CR4100	CR4210	CP 4200	Chagoo	Chasoo	Chagoon	Charloo	CPS 200	CP5300	CRS400	CP6300	CP6300	CP6600	
	AC Current	V	V			V	V	V	V						~				
ň	AC Voltage	V		~						V	~	V							
	AC Power	V														V			
Ō	AC Energy	v																	
	DC Current				~								~		~				
	DC Voltage				V									V					Z
	DC Power				~														INPUT
	Frequency	v																~	
	Power Factor	V															~		
	True RMS	V	~	~		V				V					~				
	Average RMS						~	V	~		~	V				~	~	~	
	Multi-Phase	v	~			~		~	~	~	~	~				~			
	Digital	V	v	V	V														
	0-5 VDC/0-10 VDC					V	V		V	V		V	V	V		~	~	~	OUTPUT
	4-20 mA DC					V		V	V	V	~	V	V	V		~	~	~	Ţ
	0 +/- 5 VDC												~		~				Ĕ
	0-5 VAC														~				-
	12/24 VDC Power	v	~	~	~	~			V	~		V	~	V	~	~	~	~	
	Loop Powered							V			~								SUPPLY
	Self Powered						~												P
	Din Rail Mount	V	v	~	V	V	V	V	V	V	V	V	V	V	V	~	~	~	Ĭ
	Split Core					V	V	V	V				V		~				
	Panel Mount	v	~	~	~	~	~	V	~	V	~	~	V	V	~	~	~	~	
	UL/CSA Approved					~	~	V	~	~	~	~	~	~	~	~	~	~	2
	CE Approved	v	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	OTHER
	RoHS Compliant	v	~	~	~	V	~	V	~	~	~	~	~	~	~	~	~	~	æ

CR Magnetics manufactures many custom products for our customers. Whether it is a unique input range or output style, we can handle any special request. If you cant find what you need, call our expert technical staff and we can suggest a solution!

Use CR Magnetics Current and Potential Transformers with any transducer, relay, or indicator product to extend the measuring range of the device. Currents as high as 10,000 Amps and voltages as high as 33KV can be accurately and inexpensively measured.

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 10

Web: http://www.crmagnetics.com


```
E-mail: sales@crmagnetics.com
```

DATA STREAM Digital Transducers for Monitoring Current Stream Voltage, Power, Phase Angle and Frequency

The **Data Stream** series provides a digital stream of data that can contain complete electrical properties information including current, voltage, power, phase angle and frequency. Additionally, an energy totalizer can be configured to give total energy calculations. All data is transmitted via an RS485 bus, and a single bus can communicate with multiple devices. MODBUS capable programming is also available.

Data

The **CRD4100** series are designed to provide AC current value information over an RS485 bus. These units are available in single element, 3 Phase 3 Wire (DELTA) systems, and 3 Phase 4 Wire (WYE) systems. Output information includes all all line/phase currents, depending on system configuration.

The **CRD4500** series are designed to provide AC voltage value information over an RS485 bus. These units are available in single element, 3 Phase 3 Wire (DELTA) systems, and 3 Phase 4 Wire (WYE) systems. Output information includes all all line/phase voltages, depending on system configuration.

The **CRD6100** series are designed to measure DC power systems. Available in single element only, these units will provide current, voltage, and power information across an RS485 Bus.

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com E-mail: sales@crmagnetics.com 11

Selection Guide

100			CPA.				ATTO O	of the second	1550 C	ASTO REAL	
AC Current	V	V	V	~	v	/					
AC Voltage	~	/	~				~	/	~		
DC Current										~	
DC Voltage										~	APP
AC Power	~	/	~								
DC Power										~	APPLICATION
Phase Angle	~	/	~								
Frequency	v	v	~	~	/	/	~	/	~		
Single Phase	~			~			/			~	
Three Phase 3 Wire		v			v			v			_
Three Phase 4 Wire			V			~			~		
Power Totalizer	~	V	V							~	METHOD
Panel Mount	v	V	v	v	V	/	~	V	V	v	9
DIN Rail Mount	~	v	~	~	~	~	~	v	~	~	
UL/CSA Approved											AGENCY
CE Approved RoHS Compliant	v v										
CRD5170 - 🗆 - CRD4110 -		/	,	e, ac m	ULTIFU	NCTION NCTION	RS48 5	TRANS	DUCER		
CRD4150 - CRD4170 - CRD4510 - CRD4550 - CRD4550 - CRD4570 - CRD6110 - 150 - 0-150 VAC 300 - 0-300 VAC (Available up to and including 600VAC)	-	ELEMEI	NT AC C NT AC C NT AC C NT AC V NT AC V NT AC V	URREN URREN URREN OLTAGE OLTAGE OLTAGE	ULTIFU T RS48 T RS48 T RS48 RS485 RS485 RS485 T RS485	NCTION 5 TRANS 5 TRANS 5 TRANS 5 TRANS 5 TRANS 5 TRANS 5 TRANS 1 - 0- 5 - 0- 15 - 0- 25 - 0-2	RS485 DUCER DUCER DUCER DUCER DUCER DUCER DUCER 1 AAC 5 AAC 15 AAC 25 AAC		DUCER	ŋ	

 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119

 Web: http://www.crmagnetics.com
 12
 E-mail: sales@crmagnetics.com

DIN RAIL / PANEL MOUNT

150 to 300 VAC 1 to 25 AAC Input Range

Data Stream RS485 Digital Transducer

The CRD5100 Series Data Stream Digital Transducers are designed for complete monitoring of electrical power systems. The digital technology is used to measure voltage, current, power frequency and energy in single and three phase designs. The data is streamed over an RS485 IEEE bus which enables multiple transducers to communicate thru a single master connection. These advanced sensors are ideal for entire plant or zone monitoring. Also, the communication alagorithm can be pre-ordered with ASCII based control or modified MODBUS based control.

Sensing

Voltage, True RMS Current, True RMS Active Power, bi-directional Active Energy, bi-directional Reactive Power, bi-directional Reactive Energy, bi-directional **Power Factor** Frequency

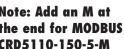
Applications

Sub-Metering Motor Loads Uninterruptible Power Systems Remote Monitoring Load Shedding **Energy Management**

Features

35mm DIN Rail or Panel Mount 24 VDC powered Use with external current transformers Highest precision available Connection diagram printed on case

Regulatory Agencies



PART NUMBERS

CRD5110	-		-	1 E	em	ent, AC Multifunction R	S485 Digital Transducer
CRD5150	-		-	3 Pha	se, S	3-Wire AC Multifunctior	n RS485 Digital Transducer
CRD5170	-		-	3 Pha	se, 4	4-Wire AC Multifunctior	n RS485 Digital Transducer
	150	VAC	5	•	0-1 AAC 0-5 AAC	Note: Add an N	
	300	• 0-300	VAC	-		0-15 AAC 0-25 AAC	the end for MO

Available up to and including 600 VAC

Above 30 AAC must use 5 amp CT

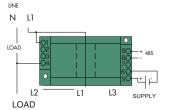
3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

Web: http://www.crmagnetics.com

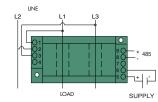
13

E-mail: sales@crmagnetics.com

Data Stream

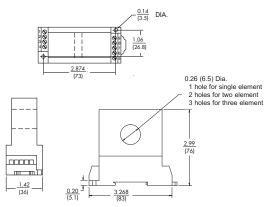

RS485 Digital Transducer

SPECIFICATIONS

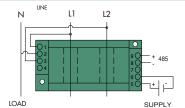

Basic Accuracy:	0.5%	Torque Specifications:
Calibration:	True RMS Sensing	Response Time:250 ms. max. 0-90% FS
Thermal Drift:	500 PPM/°C	Relative Humidity:80% for temperatures up to
Operating Temperature ₁ :	0°C to +60°C	31°C and decreasing linearly to 50% at 40°C
Installation Category:	CAT II	Output Resolution:16 bit
Vibration Tested To:	IEC 60068-2-6,1995	Transducer fanout on common bus:64 max
Pollution Degree:	2	Baud Rate ₃ :1200, 2400, 4800, 9600, 19.2K .bps
Insulation Voltage:	2500 VDC	A/D Conversion Type:4th order Delta Sigma
Altitude:	2000 meter max	Device Address ₃ :00 to FF
Frequency Range:	20 Hz - 5 KHz	Data Format: ASCII
MTBF:	Greater than 100K hours	Supply Current:Typical 30mA Max 30mA
Cleaning:	Water-dampened cloth	Weight:
Supply Voltage ₂ :	24 VDC ±10%	

1) RH 5% to 95%, non-condensing 2) 0.4% max. ripple Vpp

3) Factory default settings: address 01, baud rate 9600, no parity, no flow control, 1 stop bit

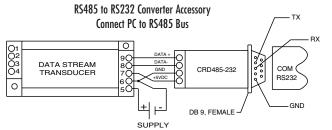


CRD5110 Single Element, 2-Wire



CRD5150 Dual Element, 3-Wire


Connection Diagram


OUTLINE DRAWING

CRD5150 Dual Element, 3-Wire

CRD5170 3 Element, 4-Wire CRD485-232

ASCII Simplified Programming Commands

A simplified data structure is used with only 6 commands required for full control of the transducer. Commands are : Read Transducer Name, Read Configuration, Set Configuration, Read Measurements, Read Energy Totalizer and Clear Energy Totalizer. For illustration, the following commands are used to read data from a CRD5170 3 Phase, 4 Wire Transducer with a device address of 00. Command Transducer to Read Data: #00A<cr>

 $\label{eq:transducers} \begin{array}{l} \mbox{Transducers Response: }>+[\% \mbox{ FS Voltage}_{1-N}]+[\% \mbox{ FS Current}_1]+[\% \mbox{ FS Voltage}_{2-N}]+[\% \mbox{ FS Current}_2]+[\% \mbox{ FS Voltage}_{3-N}]+[\% \mbox{ FS Current}_3,][+/- \% \mbox{ FS Voltage}_{3-N}]+[\% \mbox{ FS Voltage}$

Power][+/-% FS VARS][+/-Power Factor][Frequency]<cr>
Command Transducer to Read Energy Totalizer: #00W<cr>

Transducer Responds: 01[+/-KWHr]{\[+/-KVHr][check sum]<cr>

Note: This is for illustration purposes only, See Applications Guides (Section I for complete instructions.

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

Web: http://www.crmagnetics.com

14

E-mail: sales@crmagnetics.com

Data Stream

Data Stream RS485 Digital Current Transducer

DIN RAIL / PANEL MOUNT

Single Element - .26" Window 1 to 25 AAC Input Range

Two Element - .26" Window 1 to 25 AAC Input Range

Three Element - .26" Window 1 to 25 AAC Input Range

The **CRD4100** Series Data Stream Digital Current Transducers are designed for applications where AC current waveforms are not purely sinusoidal. The digital technology is used to measure voltage, current, power frequency and energy in single and three phase designs. The data is streamed over an RS485 IEEE bus which enables multiple transducers to communicate thru a single master connection. These advanced sensors are ideal for entire plant or zone monitoring. Also, the communication alagorithm can be pre-ordered with ASCII based control or modified MODBUS based control.

Sensing

True RMS Current, Each Phase

Applications

Sub-Metering Motor Loads Uninterruptible Power Systems Remote Monitoring Load Shedding Energy Management

Features

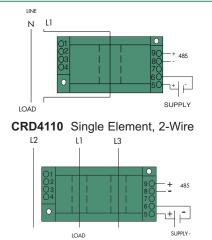
35mm DIN Rail or Panel Mount 24 VDC powered Use with external current transformers Highest precision available Connection diagram printed on case

Regulatory Agencies

CR Magnetics has a wide selection of Current and Potential Transformers to extend the range of any part. See Sections F & G for details.

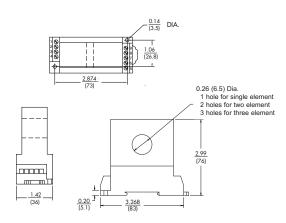
		PART N	UMBERS						
CRD4110	-		Single Element, AC Cu	urrent RS485 Digital Transducer					
CRD4150	-		Two Element, AC Cu	rrent RS485 Digital Transducer					
CRD4170	-	Three Element, AC Current RS485 Digital Transducer							
		5 15	 0-1 AAC 0-5 AAC 0-15 AAC 0-25 AAC 	Note: Add an M at the end for MODBUS CRD4110-5-M					

Above 30 AAC must use 5 amp CT

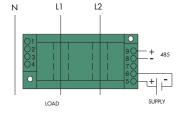

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com 15 E-mail: sales@crmagnetics.com

RS485 Digital Current Transducer

Basic Accuracy:0.5%
Calibration:True RMS Sensing
Thermal Drift:500 PPM/°C
Operating Temperature ₁ :0°C to +60°C
Installation Category:CAT II
Vibration Tested To:IEC 60068-2-6,1995
Pollution Degree:2
Insulation Voltage:2500 VDC
Altitude:2000 meter max
Frequency Range:20 Hz - 5 KHz
MTBF:Greater than 100K hours
Cleaning:
Supply Voltage ₂ :24 VDC ±10%
1) RH 5% to 95%, non-condensing 2) 0.4% max. ripple Vpp
3) Factory default settings: address 01, baud rate 9600, no parity,

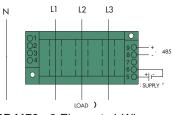

Torque Specifications:
Response Time:250 ms. max. 0-90% FS
Relative Humidity:80% for temperatures up to
31°C and decreasing linearly to 50% at 40°C
Output Resolution:16 bit
Transducer fanout on common bus:64 max.
Baud Rate ₃ :1200, 2400, 4800, 9600, 19.2K .bps
A/D Conversion Type:4th order Delta Sigma
Device Address ₃ :00 to FF
Data Format: ASCII
Supply Current:Typical 30mA Max 30mA
Weight:0.5 lbs.

address 01, baud rate 9600, no parity, no flow control, 1 stop bit actory default settings

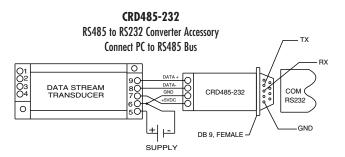


CRD4150 Dual Element, 3-Wire

Connection Diagram



OUTLINE DRAWING



CRD4150 Dual Element, 3-Wire

Ν

CRD4170 3 Element, 4-Wire

ASCII Simplified Programming Commands

A simplified data structure is used with only 6 commands required for full control of the transducer. Commands are : Read Transducer Name, Read Configuration, Set Configuration, Read Measurements, Read Energy Totalizer and Clear Energy Totalizer. For illustration, the following commands are used to read data from a CRD5170 3 Phase, 4 Wire Transducer with a device address of 00. Command Transducer to Read Data: #00A<cr>

Transducers Response: >+[% FS Voltage_{L1-N}]+[% FS Current_{L1}]+[% FS Voltage_{L2-N}]+[% FS Current_{L2}]+[% FS Voltage_{L3-N}]+[% FS Current_{L3},][+/- % FS Power][+/-% FS VARS][+/-Power Factor][Frequency]<cr>

Command Transducer to Read Energy Totalizer: #00W<cr> Transducer Responds: 01[+/-KWHr]{[reck sum]<cr>

Note: This is for illustration purposes only, See Applications Guides (Section I for complete instructions.

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com E-mail: sales@crmagnetics.com 16

Data Stream

Data Stream RS485 Digital Voltage Transducer

DIN RAIL / PANEL MOUNT

Single Element 150 to 300 VAC Input Range

Two Element 150 to 300 VAC Input Range

Three Element - .26" Window 150 to 300 VAC Input Range The **CRD4500** Series Data Stream Digital Transducers are designed for applications where AC current waveforms are not purely sinusoidal. The digital technology is used to measure voltage, current, power frequency and energy in single and three phase designs. The data is streamed over an RS485 IEEE bus which enables multiple transducers to communicate thru a single master connection. These advanced sensors are ideal for entire plant or zone monitoring. Also, the communication alagorithm can be pre-ordered with ASCII based control or modified MODBUS based control.

Sensing

True RMS Voltage, Each Phase

Applications

Sub-Metering Motor Loads Uninterruptible Power Systems Remote Monitoring Load Shedding Energy Management

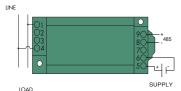
Features

35mm DIN Rail or Panel Mount 24 VDC powered Use with external current transformers Highest precision available Connection diagram printed on case

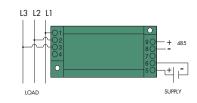
Regulatory Agencies

		PART NUMBERS								
CRD4510	-	Single Element, AC Voltage RS485 Digital Transducer								
CRD4550	-	Two Element, AC Voltage RS485 Digital Transducer								
CRD4570	-	Three Element, AC RS485 Digital Transducer								
		150 - 0-150 VAC 300 - 0-300 VAC Available up to and including 600 VAC CRD4510-150-M								

3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com17E-mail: sales@crmagnetics.com

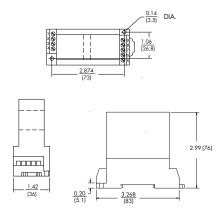

RS485 Digital Voltage Transducer

Basic Accuracy:	0.5%
Calibration:	True RMS Sensing
Thermal Drift:	500 PPM/°C
Operating Temperature ₁ :	0°C to +60°C
Installation Category:	CAT II
Vibration Tested To:	IEC 60068-2-6,1995
Pollution Degree:	2
Insulation Voltage:	2500 VDC
Altitude:	2000 meter max
Frequency Range:	20 Hz - 5 KHz
MTBF:	Greater than 100K hours
Cleaning:	Water-dampened cloth
Supply Voltage ₂ :	24 VDC ±10%
1) RH 5% to 95%, non-condensing	g 2) 0.4% max. ripple Vpp
3) Factory default settings: add	ress 01. baud rate 9600. no parity.


SPECIFICATIONS	S	P	E	C		F		C	A	Ι		0		l	S	
----------------	---	---	---	---	--	---	--	---	---	---	--	---	--	---	---	--

Torque Specifications:
Response Time:250 ms. max. 0-90% FS
Relative Humidity:80% for temperatures up to
31°C and decreasing linearly to 50% at 40°C
Output Resolution:16 bit
Transducer fanout on common bus:64 max.
Baud Rate ₃ :1200, 2400, 4800, 9600, 19.2K .bps
A/D Conversion Type:4th order Delta Sigma
Device Address ₃ :00 to FF
Data Format: ASCII
Supply Current:Typical 30mA Max 30mA
Weight:

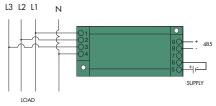
3) Factory default settings: address 01, baud rate 9600, no parity, no flow control, 1 stop bit



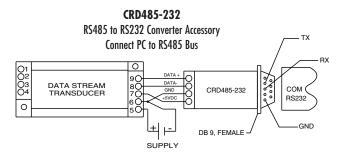
CRD4510 Single Element, 2-Wire

CRD4550 Dual Element, 3-Wire

Connection Diagram



OUTLINE DRAWING


485

CRD4550 Dual Element, 3-Wire

L2 N | L1

CRD4570 3 Element, 4-Wire

ASCII Simplified Programming Commands

A simplified data structure is used with only 6 commands required for full control of the transducer. Commands are : Read Transducer Name, Read Configuration, Set Configuration, Read Measurements, Read Energy Totalizer and Clear Energy Totalizer. For illustration, the following commands are used to read data from a CRD5170 3 Phase, 4 Wire Transducer with a device address of 00. Command Transducer to Read Data: #00A<cr>

Transducers Response: >+[% FS Voltage_1_N]+[% FS Current_1]+[% FS Voltage_2_N]+[% FS Current_2]+[% FS Voltage_3_N]+[% FS Current_3,][+/- % FS Power][+/-% FS VARS][+/-Power Factor][Frequency]<cr>

Command Transducer to Read Energy Totalizer: #00W<cr> Transducer Responds: 01[+/-KWHr]{[+/-KVHr][check sum]<cr>

Note: This is for illustration purposes only, See Applications Guides (Section I for complete instructions.

3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com18E-mail: sales@crmagnetics.com

Single Element 150 to 300 VAC Input Range

Requires External DC Current Transducer CR5210 0-5VDC Output (Recommended)

Data Stream RS485 Digital DC Current Series

The **CRD6100** Series Data Stream Digital Transducers are designed for applications with DC current and voltage. The digital technology is used to measure voltage, current, power in single phase designs. The data is streamed over an RS485 IEEE bus which enables multiple transducers to communicate thru a single master connection. These advanced sensors are ideal for entire plant or zone monitoring. Also, the communication alagorithm can be pre-ordered with ASCII based control or modified MODBUS based control. **Note:** To calculate current an external DC Current Transducer with 0-5VDC is necessary. Please see our CR5210 Series.

Sensing	
DC Voltage	
DC Current	
DC Power	
DC Energy	

Applications

Sub-Metering Motor Loads Uninterruptible Power Systems Remote Monitoring Load Shedding Energy Management

Features

35mm DIN Rail or Panel Mount 24 VDC powered Use with external DC Current Transducer Highest precision available Connection diagram printed on case

Regulatory Agencies

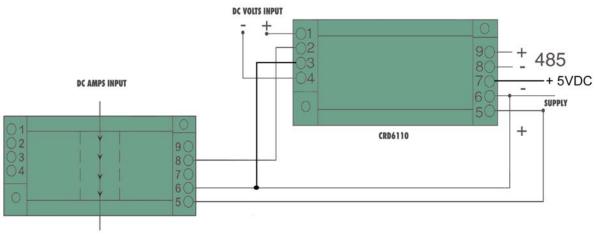
 PART NUMBERS

 CRD6110
 Single Element, DC Current RS485 Digital Transducer

 150
 0-150 VDC
 5
 0-5 VDC

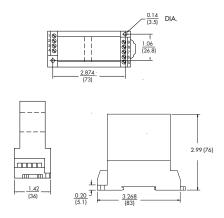
 300
 0-300 VDC
 5
 0-5 VDC

 Available up to and including600 VDC


3500 Scarlet Oak Blvd.St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119Web: http://www.crmagnetics.com19E-mail: sales@crmagnetics.com

Data Stream RS485 Digital DC Current Series

Basic Accuracy:	0.5%	Torque Specifications:	bs (0.4Nm)
Calibration:	True RMS Sensing	Response Time:250 ms. max	. 0-90% FS
Thermal Drift:	500 PPM/°C	Relative Humidity:80% for temperative	atures up to
Operating Temperature ₁ : .	0°C to +60°C	31°C and decreasing linearly to 5	50% at 40°C
Installation Category:	CAT II	Output Resolution:	16 bit
Vibration Tested To:	IEC 60068-2-6,1995	Transducer fanout on common bus:	64 max
Pollution Degree:	2	Baud Rate ₃ :1200, 2400, 4800, 960	0,19.2K .bps
Insulation Voltage:	2500 VDC	A/D Conversion Type:4th order I	Delta Sigma
Altitude:	2000 meter max	Device Address ₃ :	00 to FF
Frequency Range:	20 Hz - 5 KHz	Data Format:	ASCI
MTBF:	Greater than 100K hours	Supply Current:Typical 30mA	Max 30mA
Cleaning:	Water-dampened cloth	Weight:	0.5 lbs.
Supply Voltage ₂ :		-	
1) RH 5% to 95%, non-condensi	ing 2) 0.4% max. ripple Vpp		


SPECIFICATIONS

3) Factory default settings: address 01, baud rate 9600, no parity, no flow control, 1 stop bit

OUTLINE DRAWING

CRD485-232 RS485 to RS232 Converter Accessory Connect PC to RS485 Bus RX 01 02 03 04 \cap DATA STREAM TRANSDUCER сом (CRD485-232 RS232 60 50 0 ╘┵╽┝═ GND DB 9, FEMALE SUPPLY

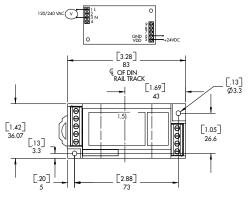
ASCII Simplified Programming Commands

A simplified data structure is used with only 6 commands required for full control of the transducer. Commands are : Read Transducer Name, Read Configuration, Set Configuration, Read Measurements, Read Energy Totalizer and Clear Energy Totalizer. For illustration, the following commands are used to read data from a CRD5170 3 Phase, 4 Wire Transducer with a device address of 00. Command Transducer to Read Data: #00A<cr>

Transducers Response: >+[% FS Voltage_{L1-N}]+[% FS Current_{L1}]+[% FS Voltage_{L2-N}]+[% FS Current_{L2}]+[% FS Voltage_{L3-N}]+[% FS Current_{L3},][+/- % FS Power][+/-% FS VARS][+/-Power Factor][Frequency]<cr> Command Transducer to Read Energy Totalizer: #00W<cr>

Transducer Responds: 01[+/-KWHr]{\[+/-KVHr][check sum]<cr>

Note: This is for illustration purposes only, See Applications Guides (Section I for complete instructions.



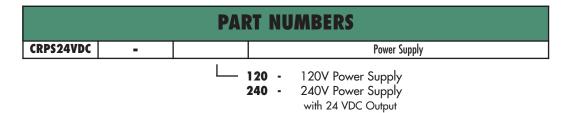
3500 Scarlet Oak Blvd.St. LouisMOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com20E-mail: sales@crmagnetics.com

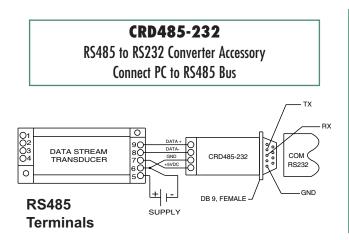
Data Stream

AC/DC Power Supply

CONNECTION DIAGRAM

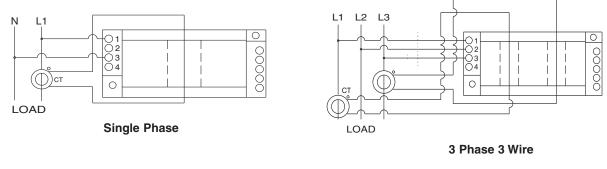
The **CRPS24VDC** Series Power supplies are designed to meter CR Magnetics digital and analog transducers. These switched mode power supplies are compact and efficient with a modern clean looking case.

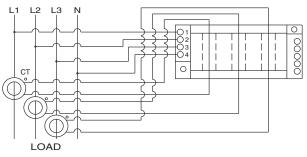

Features


35mm DIN Rail or Panel Mount Available with 120Vac/Vdc and 240Vac/Vdc Input 24 VDC Powered Use with CR Magnetics Transducers Highest precision available Connection diagram printed on case

Regulatory Agencies

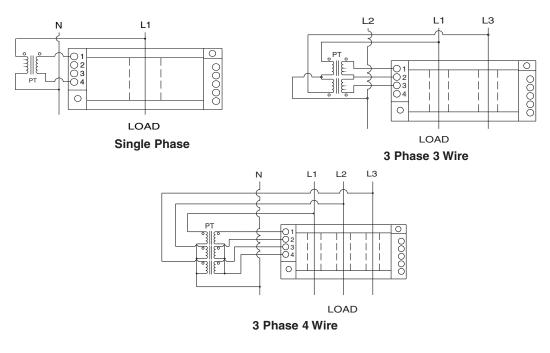
5005/42/FC			
Specifications			
Input Voltage 120V,240V±10% 50/60Hz			
Rated Output	200mA		
Output Voltage +24VDC			
Output Ripple	\leq 10mV		


 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119


 Web: http://www.crmagnetics.com
 21
 E-mail: sales@crmagnetics.com

Application Notes

The range of any Data Stream Transducer can be extended with the use of CR Magnetics' ANSI grade current transformers and voltage transformers. In these applications, current transformers step down higher currents into standard 5 Amp AC current inputs, and voltage transformers step down higher voltages into standard 120 VAC inputs. This allows the designer to measure any application with a single transducer.


Extending Current Range with Current Transformers

3 Phase 4 Wire

Extending Voltage Range with Voltage Transformers

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com 22 E-mail: sales@crmagnetics.com

Data Stream

Programming

Programming of the CR Magnetics DATA STREAM Series is straight forward and easily implemented via user programs or The DATA STREAM Software. The programming language is ASCII based and consists of Commands and Return data.

List of Common Commands				
Command	Preamble	Addr	Dir	Data
Read Transducer Name Read All Data Read Energy Totalizer Read Transducer Configuration Set Transducer Configuration Clear Energy Totalizer	\$ # \$ &	00 to FF 00 to FF 00 to FF 00 to FF 00 to FF 00 to FF	M A W 2 N/A N/A	N/A N/A N/A N/A New Addr, Input Range, Baud Totalizer Period Number

Command Structure

Each command sent to the DATA STREAM has the following structure:

Preamble Addr [Dir] [Data] <cr>

Preamble A single ASCII character which designates type of command. 2 ASCII characters which selects Addr the address of the transducer. [Dir] A single ASCII character directive which qualifies the command, not used on all commands. A set of ASCII characters required by certain [Data] command functions. A carriage return must be placed as an <cr> end of line character.

Read Transducer Name Command

Preamble	\$
Addr	00 to FF
Dir	Μ
Data	not used

Transducer Correct Response: !

Addr (00 to	FF)
Name	
<cr></cr>	

Transducer Wrong Response: ? Addr (00 to FF) <cr>

Example: Send \$0AM<cr> Receive !0A51101205<cr>

In this case, a CRD5110 Single Phase Multifunction transducer with a range of 120 Volts and 5 amps is programmed with the address 0A, and returns its last 4 digits to the system.

Read All Data Command

Preamble	#
Addr	00 to FF
Dir	Α
Data	not used

Transducer Correct Response:

Voltage % (+/-X.XXXX) Current % (+/-X.XXXX) Power % (+/-X.XXXX) VARS % (+/-X.XXXX) Power Factor % (+/-X.XXXX) Frequency (XX.XXX) <cr>

Transducer Wrong Response: Addr (00 to FF)

<cr> Example: Given a CRD5110, programmed with a Voltage range of 500VAC RMS, and a Current range of 5 AAC RMS, Address 1B. Input Voltage =300 VAC RMS, Input current = 4 AAC RMS, Power Factor = 1.000 (Pure resistive) Frequency of 50 Hz. #1BA<cr> Send >+0.6000+0.8000+0.4800+0.0000+1.000050.000<cr> Receive All signed data is returned as a percent of Full Scale. Thus the formula: Value = Data(%) X Full Scale Will give the actual value of the parameter. For this example: Voltage = +0.6000% X 500 = 300 VAC RMS Current = +0.4000% X 5 = 4 AAC RMS Real Power = +0.4800% X 500 X 5 = 1200 Watts VARs = +0.0000 X 500 X 5 = 0.0000 Vars Power Factor = +1.0000 X 100% = 100% PF (purely resistive) The Frequency Value is the Actual Data: Frequency = 50.000 Hertz NOTE: Multifunction units will return Voltage, Current, Power, Vars, Power Factor, and Frequency. Single function units will return only the single function. For Multiphase units, the Voltage and Current Data will be returned in the following order: 3 Phase 3 Wire Voltage₁₂, Current₁, Voltage₃₂, Current₃, Power, Vars, Power Factor, Frequency 3 Phase 4 wire Voltage1, Current1, Voltage2, Current2, Voltage3, Current₃, Power, Vars, Power Factor, Frequency.

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com 23

Programming (continued)

Read Energy Totalizer Command

Preamble Addr Dir Data	# 00 to FF W not used	
Transducer Correct R	esponse:	Period Counter (00 to FF) KWHr Data (+/-XXXXX) KVHr Data (+/-XXXXX) Checksum (XX) <cr></cr>
Transducer Wrong Re	esponse:	? Addr (00 to FF) <cr></cr>

Description of Totalizer Function

The energy totalizer function is a method by which the total amount of energy in KwHrs and KVARHrs used over a period of time can be measured. A data location within the program keeps a running total of the amount of energy used. This total starts from zero and begins totalizing the instant power is turned on to the transducer

Totalizer data is outputted when the Read Energy Totalizer Command is sent to the transducer. At this point, the transducer outputs the amount of energy totaled since the last clear or restart. A counter called the time period counter, keeps track of all instances of requested totalizer data. Thus, at turn on, the period counter is set to zero. After the first read of totalizer data, the counter is incremented by 1 and reads 1. Future requests for data increase the period counter by 1. This counter turns back to zero after 255 counts (FF).

It is important to know that the output data represents the amount of energy used since the last clear or restart. This method makes it very useful for total energy used calculations.

A Clear Totalizer Command function is also provided to reset the totalizer as needed.

The largest period of totalizer data is 1,553.5 Hours with the full scale voltage and current being input to the device. Longer peri ods are possible with lower input voltages and currents.

The data output has gain and function factors that must be included when calculating actual KwHr/KVARHr. The formula is:

Energy = Data Read X Volt Range X Current Range / 3600000

Units are KwHrs and KVARHrs depending on data read.

Please note: Unlike other data read from the transducer, the energy data is transmitted as the ASCII representation of the HEX value. Hence, when the data would return as ASCII "FF", this is equivalent to the decimal value 255.

Checksum data is provided as a verifier of correct data communi cation. The Checksum data is generated by totaling the sum of all byte by byte data, in HEX, sent from the transducer after the Read Energy Totalizer Command is accepted, then taking this HEX value and performing a logical AND with the value FFH, and outputting it. The data is an ASCII representation of the HEX value.

Example: Given a CRD5110, programmed with a Voltage range of 500VAC RMS, and a Current range of 5 AAC RMS, and Address 1B. Input Voltage =300 VAC RMS, Input current = 4 AAC RMS, Power Factor = 1.000 (Pure resistive) and a frequency of 50 Hz. Energy data has not been requested since turn on of the part. The command is sent after the part has been running one hour.

#1BW<cr> Send Receive >01+0006C0+0000001E<cr>

Time Period = 01H = 1 Decimal KwHr Data = +0006C0H = 1,728 Decimal KwHr Actual = 1.728 X 500 X 5 / 3600000 = 1.2 KwHrs KVARHr Data = +000000H = 0 Decimal KVARHrs Actual = 0 KVARHrs Checksum = 1EH

Doing the Check on the Checksum:

3EH+31H+2BH+30H+30H+30H+36H+43H+30H+2BH+30H+30H +30H+30H+30H+30H = 31EH AND FFH = 1EH

Read Transducer Configuration Command

Preamble Addr Dir Data	\$ 00 to FF 2 not used	
Transducer Correct Response:		! Addr (00 to FF) Input Range (Always 00) Baud Rate Code (See Below) Data Format (Always 01) <cr></cr>
Transducer Wrong Response:		? Addr (00 to FF) <cr></cr>
Example: Send Receive	\$0A2 <cr> !0A000601</cr>	<cr></cr>

In this case, a CRD5110 Multifunction transducer is programmed with the address 0A. Reading the configuration returns 0A for the address, 00 for the Input Range (fixed), 06 for 9600 bps Baud rate, and 01 for no check sum on standard data (Data Format is fixed).

Baud Rate Codes are as follows:

03 = 1200 bps 04 = 2400 bps05 = 4800 bps 06 = 9600 bps (Default) 07 = 19200 bps

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 24

Web: http://www.crmagnetics.com

E-mail: sales@crmagnetics.com

Programming (continued)

Set Transducer Configuration Command

Preamble Addr Dir Data	% 00 to FF not used New Addr - 00 to FF Input Range - Always Set To 00 Baud Rate - 03 to 07 Data Format - Always Set to 01		
Transducer Correct Response: ! New Addr (00 to FF)			

<cr>

Transducer Wrong Response: ? Addr (00 to FF) <cr>

Example: Send %0A0B000701<cr> Receive !0B<cr>

In this case, a CRD5110 Multifunction transducer is programmed with the address 0A. The command changes the address to 0B, and sets the baud rate to 19,200 bps.

Clear Energy Totalizer Command

Preamble	&
Addr	00 to FF
Dir	not used
Data	Time Period Count

Transducer Correct Response: Addr (00 to FF) <cr> Transducer Wrong Response: ?

Addr (00 to FF) <cr>

Description of Clear Totalizer Function

The Clear Energy Totalizer Command is a method by which the internal energy totalizer can be reset to zero. The programmer simply addresses the transducer with the appropriate address, and also sends the correct time period number which will then clear the totalizer to zero.

The correct time period number is the value that was received with the last Read Totalizer Data Command. An incorrect period num ber will result in a command error, and the totalizer will not be cleared. Clearing the totalizer properly does not reset the Time Period Counter. Upon proper totalizer clear, the Time Period Counter will be increased by 1.

Should an invalid Clear Totalizer Command be refused (because of an incorrect address or an incorrect Time Period Number), the totalizer will not be cleared, energy data will continue to be totalized to the sum, and the Time Period Counter will not be incremented.

Example: A CRD5110 with Address 0A needs to have its totalizer cleared. The totalizer data has been read 3 previous times

Send: &0A04<cr> Receive: ?0A<cr>

The CRD5110 received an order to clear the totalizer, but an improper time period number was received.

&0A03<cr> Send: Receive: !0A<cr>

The command was sent properly, as the correct time period number was sent. Please note that the Time Period Counter has been increased by 1, so the next Read Totalizer Command will give a time period number of 4.

Reset to Factory Defaults Command

As an aid to system startup, a Reset to Factory Defaults Command is provided. Since this command resets the transducer to Address 01 and Baud rate 9600 bps, no address is needed to run the command.

NOTE: THIS COMMAND CANNOT BE USED ON NETWORKED TRANSDUCERS. ALL TRANSDUCERS ON THE NET ORK WILL BE RESET, AND THE RESULTING RETURN INFO WILL CAUSE NUMEROUS BUS CONFLICTS. THIS IS FOR ONE TO ONE CONFIGURATIONS ONLY!!!!

Example: Need to reset a transducer to Factory settings via a RS232 comm port.

Send: @CEAFW<cr> Receive: !01<cr>

B

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com 25

 3500 Scarlet Oak Blvd.
 St. Louis
 MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119

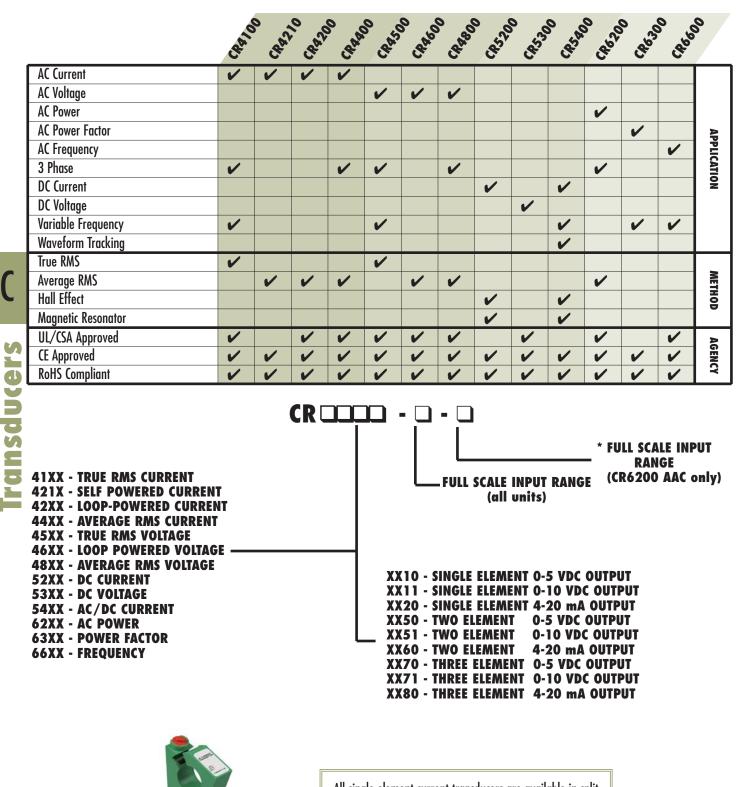
 Web: http://www.crmagnetics.com
 26
 E-mail: sales@crmagnetics.com

Analog Transducers for Monitoring Current Voltage, Power, Power Factor, and Frequency

CR Magnetics Analog Transducers provide the easy to use tools to monitor any electrical power system, power supply, or electrical load. From simple DC to DC voltage transducers, to complex real and imaginary power transducers, CR Magnetics has the exact input, output, and sensing technology to meet the needs of any electrical power sensing application.

CR Magnetics **Analog Current Transducers** come in a variety of packages and technologies for any current sensing need. The **CR4100 Series** current transducers are True RMS devices for sensing non-sinusoidal AC waveforms. The **CR4400 Series** Average sensing RMS units are designed to measure current derived from utility power busses. The **CR4200 Series** are loop powered 2 wire transducers for average AC sensing. **CR5200 DC Current** transducers are available bipolar or unipolar output designs, and the **CR5400 Series** AC/DC current transducers output a waveform that tracks the input waveform at a calibrated voltage output.

Various outputs are available which include 0-5 VDC, 0-10 VDC, 4-20 mADC. Custom ranges from 0 to 600 Volts or Amps and anywhere in betwee. Contact factory for details.

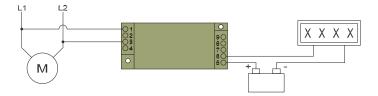

CR Magnetics offers single element split core devices that can be installed without interrupting the power system. CR Magnetics also offers monitoring solutions for 3 phase Delta and Wye systems for connected AC power systems.

CR Magnetics has a large offering of **Analog Voltage Transducers** to realize all types of voltage sensing. The **CR4500 Series** are True RMS devices that can accurately measure variable frequencies and waveforms, from single element and 3 phase systems. The **CR4800 Series** are Average RMS devices for measuring sinusoidal utility based power systems. The **CR5300 Series** measure DC voltages. All are available with ±5 VDC, ±10 VDC, 4-20 mADC.

CR Magnetics also provides **Analog Power, Frequency and Power Factor Transducers** to fully measure all characteristics of AC power systems. The **CR6200 Series** Power Transducers can measure Active and Reactive power in single and 3 phase systems. The **CR6600 Series** Frequency transducers provide a way to sense the frequency of an AC voltage signal, and the **CR6300 Series** Power Factor transducers provide a method for sensing the power factor of an AC power system.

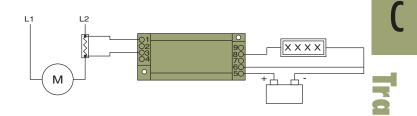
Selection Guide

All single element current transducers are available in split core design. Simply put an "S" at the end of the prefix

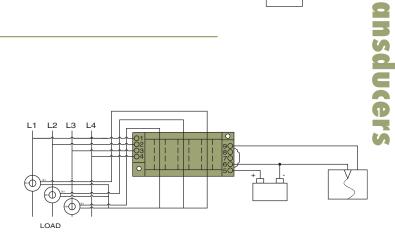


3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com28E-mail: sales@crmagnetics.com

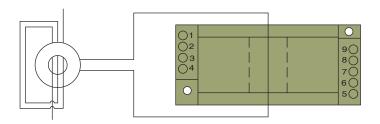
INDUSTRIAL APPLICATIONS FOR ELECTRICAL TRANSDUCERS


VOLTAGE MONITORING

This illustrates a typical application for monitoring the voltage supply to a motor. The transmitter is attached to the incoming voltage supply leads. Using the CR4600 Series for AC Voltage Sensing, the transmitter output is attached to standard 4-20 mA, loop-powered panel meter. The transmitter may also be attached to a PLC to monitor for over/under voltage and phase loss.


DC CURRENT MONITORING

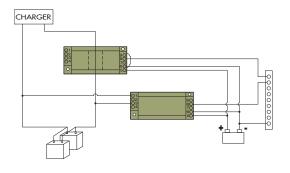
DC current may be monitored by using the voltage transducer attached to a resistive shunt. The illustration shows a CR5310-.05 transducer with an input range of 0-50 mV attached to a standard 50 mV resistive shunt. The output is attached to a standard 0-5 VDC panel meter.


POWER TRANSDUCER

A university campus needs to monitor the power coming into each building and record the results at a central location. The incoming feeds are rated at 480/277, 2000 amps, 3-phase, 4-wire Y. An ANSI Metering Class Current Transformer, part number CR170RL-202, is selected from the CR Magnetics Current Transformer Catalog Section F to convert the full-load current down to 5 Amps for input to the transducer. The voltage legs are connected directly to the transducer.

LOOP-POWERED AC CURRENT TRANSMITTER

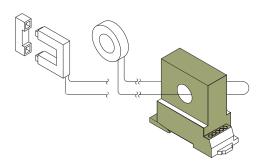
Looping the primary current-carrying wire several times through the window opening may change the scaling factor. The "actual" measurement range will be the nameplate rating of the transducer divided by the number of wire passes. For example, the CR4220-30 has a nameplate rating of 0-30 AAC. Three passes of the wire through the window opening will then provide an effective range of 0-10 AAC (30/3).



3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com29E-mail: sales@crmagnetics.com

INDUSTRIAL APPLICATIONS FOR ELECTRICAL TRANSDUCERS

DC POWER MEASUREMENT


A plant manager needs to record the total charge to a bank of batteries. A CR5210 DC Current Transducer is attached to one of the incoming current lead and a CR5310 is attached to the incoming voltage lines. The output from each transducer is attached to a 0-5 VDC analog input module on a PLC. The PLC computates the product of the current and voltage for the total power usage.

Transducers


EXTERNAL CURRENT TRANSFORMERS

The transducers and transmitters may be used with an external split-core or solid-core current transformer. The external transformer can be used to access remote loads or where the current-carrying wire is too large to fit through the window opening of the unit. A standard, 5 Amp secondary, commercial grade current transformer would be attached with the secondary leads threaded through the window opening. A transducer or transmitter with a 0-5 Amp input range would be selected. Request CR Magnetics Current Transformer Catalog Section F.

OVER/UNDER CURRENT MONITORING

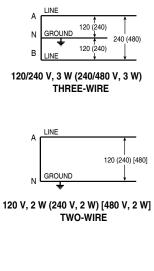
This illustrates a typical application for monitoring current to a 3-Phase motor. External current transformers attached to each of the three incoming power lines. The secondary leads from each current transformer are routed through the window openings in the CR4170 True RMS Current Transducer. A standard 5 Amp secondary current transformer is recommended to be attached to a transducer rated for 5 Amp input. With the transducer attached to a PLC the over/under current and phase loss conditions can be monitored.

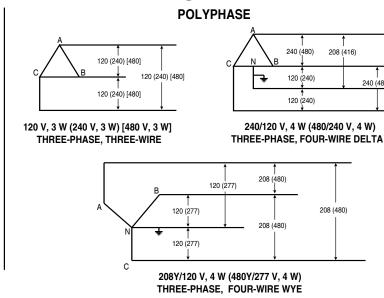
3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com30E-mail: sales@crmagnetics.com

AC MOTOR LOAD CHART

208 (416)

240 (480)


AC MOTOR LOAD CHART


	MOTOR FULL LOAD CURRENTS				MAXIMUM LOCKED ROTOR CURRENTS										
	SIN PH/	GLE ASE		3-I	PHASE	A.C. II	NDUCI				3 Pl	HASE A.C.	INDUCTIC	DN	
HP	115V	230V	115V	200V	230V	460V	575V	2300V	4160V	200V	220/230V	440/460V	550/575V	2300V	4160V
1/2	9.8	4.9	4	2.3	2	1	.8			23	20	10	8		
3/4	13.8	6.9	5.6	3.2	2.8	1.4	1.1			29	25	12.5	10		
1	16	8	7.2	4.15	3.6	1.8	1.4			34.5	30	15	12		
1.5	20	10	10.4	6	5.2	2.6	2.1			46	40	20	16		
2	24	12	13.6	7.8	6.8	3.4	2.7			57.5	50	25	20		
3	34	17		11	9.6	4.8	3.9			73.5	64	32	25		
5	56	28		17.5	15.2	7.6	6.1			106	92	46	37		
7.5	80	40		25	22	11	9			146	127	63	51		
10	100	50		32	28	14	11			186	162	81	65		
15				48	42	21	17			267	232	116	93		
20				62	54	27	22			334	290	145	116		
25				78	68	34	27			420	365	182	146	35	19
30				92	80	40	32			500	435	217	174	41	23
40				120	104	52	41			667	580	290	232	55	30
50				150	130	65	52			834	725	362	290	69	38
60				177	154	77	62	16	8.9	1000) 870	435	348	83	46
75				221	192	96	77	20	11	1250) 1085	592	435	104	57
100				285	248	124	99	26	14.4	1670) 1450	725	580	139	76
125				358	312	156	125	31	17	2083	5 1815	907	726	173	96
150				415	360	180	144	37	20.5	2500) 2170	1085	870	208	115
200				550	480	240	192	49	27	3340) 2900	1450	1160	278	153
OVER 200HP															
APPRC				2.75	2.40	1.20) .96	.24	1.33						

*This information provided as reference only. Consult motor manufacturer and related standards for additional information.

U.S. Standard Voltages

SINGLE-PHASE

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com E-mail: sales@crmagnetics.com 31

True RMS AC Current Transducer

DIN RAIL / PANEL MOUNT, TRUE RMS

Single Element - 0.79" Window 0.5 to 600 AAC Input Range

Two Element - 0 .26" Window 0.5 to 30 AAC Input Range

Three Element - 0.26" Window 0.5 to 30 AAC Input Range

The **CR4100** Series True RMS Current Transducers and Transmitters are designed for applications where AC current waveforms are not purely sinusoidal. More precise and accurate than other transducers, these devices are ideal in chopped wave and phase fired control systems.

Applications

Phase fired controlled heaters Quickly varying motor loads Chopped wave form drivers Harmonic currents

Features

35mm DIN Rail or Panel Mount Available with 0-5 VDC, 0-10 VDC, 4-20 mADC output 24 VDC powered Use with external current transformers Highest precision available Connection diagram printed on case

Regulatory Agencies

Recognized to meet UL 61010B-1 Constructed to meet CAN/CSA-C22.2, No. 61010-1-2004 Meets requirement of IEC 61010-1 and BS EN 61010-1

E199795

Use a 5 Amp Secondary Current Transformer to extend the ranges of all CR Magnetics Current Transducers

All single phase current transducers are available in split core design. Simply put an "S" at the end of the prefix* I.E. CR4110S-10 * Not UL Recognized

Add suffix for input range

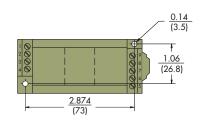
5	-	0-5 AAC **
10	-	0-10 AAC **
15	-	0-15 AAC **
20	-	0-20 AAC **
25	-	0-25 AAC **
30	-	0-30 AAC **
40	-	0-40 AAC
50	-	0-50 AAC
75	-	0-75 AAC
100	-	0-100 AAC
150	-	0-150 AAC

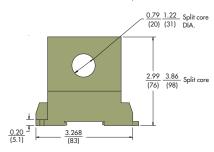
Ranges available up to and including 600 AAC

Transducers

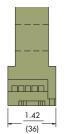
PARI NUMBERJ						
CR4110(S)	-		Single element with 0 - 5 VDC output (split core design)			
CR4111(S)			Single element with 0 - 10 VDC output (split core design)			
CR4120(S)	-		Single element with 4 - 20 mADC output (split core design)			
CR4150	-		Two element with 0 - 5 VDC output **			
CR4160	-		Two element with 4 to 20 mADC output **			
CR4170	-		Three element with 0 - 5 VDC output **			
CR4180	-		Three element with 4 - 20 mADC output **			
*	Two and thr	ree element	transducers are available only in ranges of 0.5 to 30 AAC			

DADT MUMDED

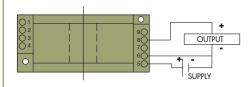

3500 Scarlet Oak Blvd.St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119Web: http://www.crmagnetics.com32E-mail: sales@crmagnetics.com


DIN RAIL / PANEL MOUNT, TRUE RMS

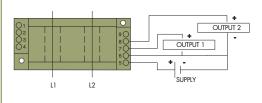
SPECIFICATIONS

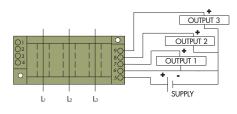

Basic Accuracy:	0.5%
Linearity:	10% to 100% FS
Calibration:	True RMS Sensing
Thermal Drift:	500 PPM/°C
Operating Temperature:	0°C to +60°C
Installation Category:	CAT II
Pollution Degree:	2
Insulation Voltage:	2500 VDC
Vibration Tested To:	IEC 60068-2-6,1995
Altitude:	2000 meter max.
Frequency Range:	20 Hz - 5 KHz
MTBF:	Greater than 100 K hours
Cleaning:	Water-dampened cloth
Supply Voltage:	24 VDC ± 10%
Output Load:	4-20 mADC - 0 to 300 Ω
	0-5 VDC - 2K Ω or Greater

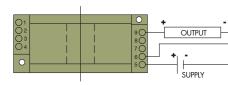
Torque Specs.:
Supply Current:CR4110/11Typical 15mAMax 25mACR4120Typical 25mAMax 40mA
CR4110/11Typical 15mA Max 25mA CR4120Typical 25mA Max 40mA
CR4120Typical 25mA Max 40mA
CR4150Typical 25mA Max 75mA
CR4160Typical 40mA Max 70mA
CR4170Typical 20mA Max 60mA
CR4180Typical 55mA Max 110mA
CR4110STypical 15mA Max 25mA
CR4120STypical 25mA Max 40mA

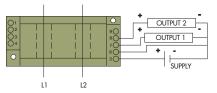


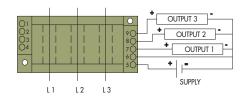
1 hole: 0.79(20) Dia. for CR4110, CR4111& 4120 (shown) 2 holes: 0.26(6.5) Dia. for CR4150 & 4160 3 holes: 0.26(6.5) Dia. for CR4170 & 4180




150 0001-2008 00


CR4110 One Element 0 - 5 VDC Output CR4111 One Element 0 - 10 VDC Output


CR4150 Two Element 0 - 5 VDC Output

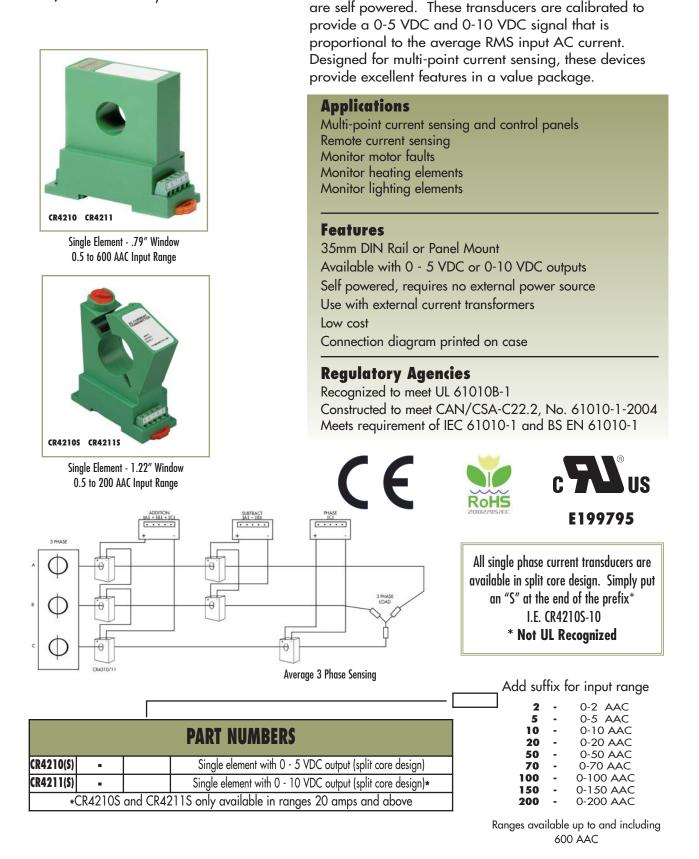

CR4170 Three Element 0 - 5 VDC Output

CR4120 One Element 4 - 20 mADC Output

CR4160 Two Element 4 - 20 mADC Output

CONNECTION DIAGRAM

NOTE: The building installation must have a switch or circuit-breaker that is in close proximity and within easy reach of the operator. The switch or circuit breaker shall be marked as the disconnecting device for the equipment.



3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

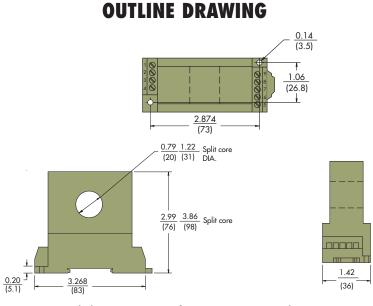
Web: http://www.crmagnetics.com 33

E-mail: sales@crmagnetics.com

DIN RAIL / PANEL MOUNT, AVERAGE RMS

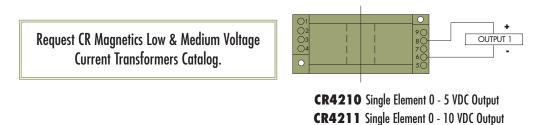
34

Web: http://www.crmagnetics.com


E-mail: sales@crmagnetics.com

The CR4210 and CR4211 Series Current Transducers

DIN RAIL / PANEL MOUNT, AVERAGE RMS


SPECIFICATIONS

Basic Accuracy:	0.5%	Cleaning:	Water-dampened cloth
Linearity:	10% to 100% FS	Output Load:	2K Ω or Greater
Thermal Drift:	500 PPM/°C	Response Time:	250 ms max., 0-90%FS
Operating Temperature:	0°C to +60°C	Relative Humidity:	80% for temperatures up to
Installation Category:	CAT II		31°C and decreasing linearly to
Vibration Tested To:	IEC 60068-2-6,1995		50% at 40°C
Pollution Degree:	2	Supply Power:	Self powered (output voltage is
Insulation Voltage:	2500 VDC		obtained from current-sensing
Altitude:	2000 meter max.		conductor)
Frequency Range:	50Hz - 400Hz	Torque Specs.:	3.0 inch lbs. (0.4Nm)
Calibration:Average Sensi	ng, RMS Calibrated	Weight:	0.5 lbs.
MTBF:Great	er than 100 K Hours		

1 hole: 0.79(20) Dia. for CR4210 & 4211 (shown)

CONNECTION DIAGRAM

NOTE: The building installation must have a switch or circuit-breaker that is in close proximity and within easy reach of the operator. The switch or circuit breaker shall be marked as the disconnecting device for the equipment.

3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com35E-mail: sales@crmagnetics.com

(

DIN RAIL / PANEL MOUNT, AVERAGE RMS

Single Element - .79" Window 0.5 to 50 AAC Input Range

Two Element - .26" Window 0.5 to 30 AAC Input Range

CR Magnetics has a wide selection of current transformers to extend the range of any part. Contact factory for more information.

The **CR4200** Series, Current Transmitters produce a calibrated 4-20 mADC signal that is proportional to the average RMS input AC current. Designed for multi-point current sensing, these devices provide excellent features in a value package. The output signal is generated from a user supplied 24 VDC power supply within the output current loop.

Applications

Multi-point current sensing and control panels Remote current sensing Monitor motor faults Monitor heating elements Monitor lighting elements

Features

Relatively low cost 35mm DIN rail or panel mount High Accuracy Easy wiring Interfaces with most commercially available instrumentation Connection diagram printed on case

Regulatory Agencies

Recognized to meet UL 61010B-1 Constructed to meet CAN/CSA-C22.2, No. 61010-1-2004 Meets requirement of IEC 61010-1 and BS EN 61010-1

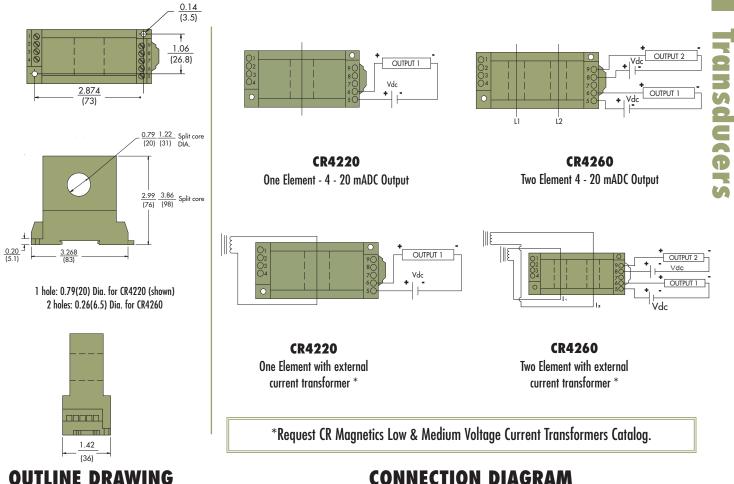
E199795

All single phase current transducers are available in split core design. Simply put an "S" at the end of the prefix* I.E. CR4220S-10 * Not UL Recognized

PART NUMBERS						
CR4220(S) - Single element with 4 - 20 mADC output (split core design)						
CR4260 - Two element with 4 - 20 mADC output*						
*Two element transducers are only available in ranges of 0.5 to 30 AAC						

5	-	0-5 AAC
10	-	0-10 AAC
15	-	0-15 AAC
20	-	0-20 AAC
25	-	0-25 AAC
30	-	0-30 AAC
40	-	0-40 AAC
50	-	0-50 AAC

Add suffix for input range


Ranges available up to and including 600 AAC

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 E-mail: sales@crmagnetics.com Web: http://www.crmagnetics.com 36

SPECIFICATIONS

Basic Accuracy:	0.5%	MTBF:	Greater than 100 K
Linearity:	10% to 100% FS	HoursCleaning:	Water-dampened cloth
Thermal Drift:	500 PPM/°C	Output Load:	0 to 300 Ω
Operating Temperature:	0°C to +60°C	Response Time:	250 ms max., 0-90%FS
Installation Category:	CAT II	Relative Humidity:	80% for temperatures up to
Vibration Tested To:II	EC 60068-2-6,1995	-	31°C and decreasing linearly to
Pollution Degree:	2		50% at 40°C
Insulation Voltage:	2500 VDC	Supply Power:	Loop Voltage 24 Vdc
Altitude:	2000 meter max.	Compliance Voltage:	16 to 28 Vdc
Frequency Range:	50Hz - 400 Hz	Torque Specs.:	3.0 inch lbs. (0.4Nm)
Calibration:Average Sensin	ig, RMS Calibrated	Weight:	0.5 lbs.
Installation Category: Vibration Tested To: Pollution Degree: Insulation Voltage: Altitude: Frequency Range:	CAT II EC 60068-2-6,1995 2 2500 VDC 2000 meter max. 50Hz - 400 Hz	Relative Humidity: Supply Power: Compliance Voltage: Torque Specs.:	80% for temperatures up to 31°C and decreasing linea 50% at 40°C Loop Voltage 24 Vdc 16 to 28 Vdc 3.0 inch lbs. (0.4Nm)

OUTLINE DRAWING

NOTE: The building installation must have a switch or circuit-breaker that is in close proximity and within easy reach of the operator. The switch or circuit breaker shall be marked as the disconnecting device for the equipment.

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com E-mail: sales@crmagnetics.com 37

Average RMS AC Current Transducer

DIN RAIL / PANEL MOUNT, AVERAGE RMS

Single Element - .79" Window 0.5 to 600 AAC Input Range

Two Element - .26" Window 0.5 to 30 AAC Input Range

Three Element - .26" Window 0.5 to 30 AAC Input Range

The CR4400 Series, Current Transducers and Transmitters are designed to produce a DC output signal that is proportional to the average RMS input AC current. Designed for multi-point current sensing, these devices provide excellent features in a value package .

Applications

Multi-point current sensing and control panels Monitor motor faults Monitor heating elements Monitor lighting elements

Features

Low cost DIN rail or panel mount Available with 0-5 VDC, 0-10VDC or 4-20 mADC output High Accuracy Interfaces with most commercially available instrumentation Connection diagram printed on case

Regulatory Agencies

Recognized to meet UL 61010B-1 Constructed to meet CAN/CSA-C22.2, No. 61010-1-2004 Meets requirement of IEC 61010-1 and BS EN 61010-1

E199795 All single phase current

transducers are available in split

core design. Simply put an "S" at the end of the prefix*

I.E. CR4410S-10

* Not UL Recognized

Use a 5 Amp Secondary **Current Transformer to extend** the ranges of all CR Magnetics **Current Transducers**

)									
PART NUMBERS				Add suff	ix fo -	r input range 0-5 AAC 0-10 AAC			
S)	-		Single element with 0 - 5 VDC output (split core design)	15	-	0-15 AAC			
S)	•		Single element with 0 - 10 VDC output (split core design)*	20	-	0-20 AAC			
S)	•		Single element with 4 - 20 mADC output (split core design)	25	-	0-25 AAC			
)	•		Two element with 0 - 5 VDC output *	30 40	2	0-30 AAC 0-40 AAC			
)	-		Two element with 4 to 20 mADC output *	50	-	0-50 AAC			
)	-		Three element with 0 - 5 VDC output *	75	-	0-75 AAC			
)	•		Three element with 4 - 20 mADC output *	100	-	0-100 AAC			
	Two and three element transducers are available only in ranges of 0.5 to 30 AAC * CR4411 Series not UL Recognized 150 - 0-150 AAC Ranges available up to and including 600 AAC								

CR4410(S)

CR4411(S)

CR4420(S)

CR4450

CR4460

CR4470

CR4480

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com E-mail: sales@crmagnetics.com 38

SPECIFICATIONS

DIN RAIL / PANEL MOUNT, AVERAGE RMS

1.42			TION DIAGRAM	
	*Request	CR Magnetics Low & Medium	Voltage Current Transformers	s Catalog.
	CR4470 Th	ree Element 0 - 5 VDC Output	CR4480 Three Element	4 - 20 mADC Output
2 holes: 0.26(6.5) Dia. for CR4450 & 4460 3 holes: 0.26(6.5) Dia. for CR4470 & 4480			O1 O O2 I I I I PO O3 I I I I 80 O4 I I I I 80 O4 I I I I 80 O4 I I I I 80 O I I I I 80	
1 hole: 0.79(20) Dia. for CR4410 & 4420 (shown)		Two Element 0 - 5 VDC Output	CR4460 Two Element	4 - 20 mADC Output
0.79 1.22 Sp (20) (31) Sp (76) 3.86 (76) (98) Sp		OUTPUT 2 SO SO SO SUPPLY		OUTPUT 2 OUTPUT 1 OUTPUT 1 OUTPUT 1 SUPPL
	CR4411 On	ne Element 0 - 5 VDC Output ne Element 0 - 10 VDC Output	CR4420 One Element 4	- 20 mADC Output
	$\begin{array}{c c} 0.14 \\ 3.5) \\ - \\ 0.6 \\ (8) \\ - \\ - \\ - \\ - \\ \end{array}$		O1 O O2 I 9 O O3 I 8 O O4 I 7 O O I 5 O	+
Output Load:0	4-20 mADC - 0 to 300 0-5 VDC - 2K Ω or Grea	iorquo opocominin	3.0 inch lbs. (0.4N 0.5 lbs.	lm)
Power Source: Frequency Range:	50Hz - 400Hz	CR4420S	TypicalmA TypicalmA	MaxmA MaxmA
nsulation Voltage:	2500 VDC 24 VDC	CR4480	Typical 55mA	Max 120mA
Altitude: Calibration: Average	2000 meter max. Sensing RMS Calibr		Typical 40mA	Max 90mA Max 110mA
Response Time: MTBF:	250 ms max., 0-90% Greater than 100 K ho		Typical 25mA Typical 20mA	Max 45mA Max 75mA
Pollution Degree:	2	CR4410/11	Typical 20mA	Max 40mA
nstallation Category:	CAT II IEC 60068-2-6,1995	Supply Voltage: Supply Current:	24 VDC ±10%	
Operating Temperature:	0°C to +60°C		linearly to 5	•
₋inearity: Γhermal Drift:	10% to 100% FS 500 PPM/°C	Relative Humidity:		peratures up I decreasing

NOTE: The building installation must have a switch or circuit-breaker that is in close proximity and within easy reach of the operator. The switch or circuit breaker shall be marked as the disconnecting device for the equipment.

(

DIN RAIL / PANEL MOUNT, TRUE RMS

Three Element 1.0 to 600 VAC Input Range

The **CR4500** Series, True RMS Voltage Transducers and Transmitters are designed for applications where AC voltage waveforms are not purely sinusoidal. More precise and accurate than other devices, these units are ideal in chopped wave and phase fired control systems.

Applications

Phase fired controlled devices Quickly varying voltage supplies Chopped waveform drivers Harmonic voltages

Features

35mm DIN rail mount or panel mount Available with 0-5 VDC, 0-10VDC or 4-20 mADC output 24 VDC powered Highest precision available Outputs isolated from inputs Connection diagram printed on case

Regulatory Agencies

Recognized to meet UL 61010B-1 Constructed to meet CAN/CSA-C22.2, No. 61010-1-2004 Meets requirement of IEC 61010-1 and BS EN 61010-1

		PART NUMBERS	50 - 150 -
CR4510	•	Single element with 0 - 5 VDC output	250 -
CR4511	•	Single element with 0 - 10 VDC output	500 -
CR4520	-	Single element with 4 - 20 mADC output	Ranges
CR4550	•	3-Phase 3-Wire with 0 to 5 VDC Output	inclu
CR4560	-	3-Phase 3-Wire with 4 - 20 mADC Output	* 111 D
CR4570	•	3-Phase 4-Wire with 0 to 5 VDC Output	- * UL Recogn
CR4580	-	3-Phase 4-Wire with 4 - 20 mADC Output	

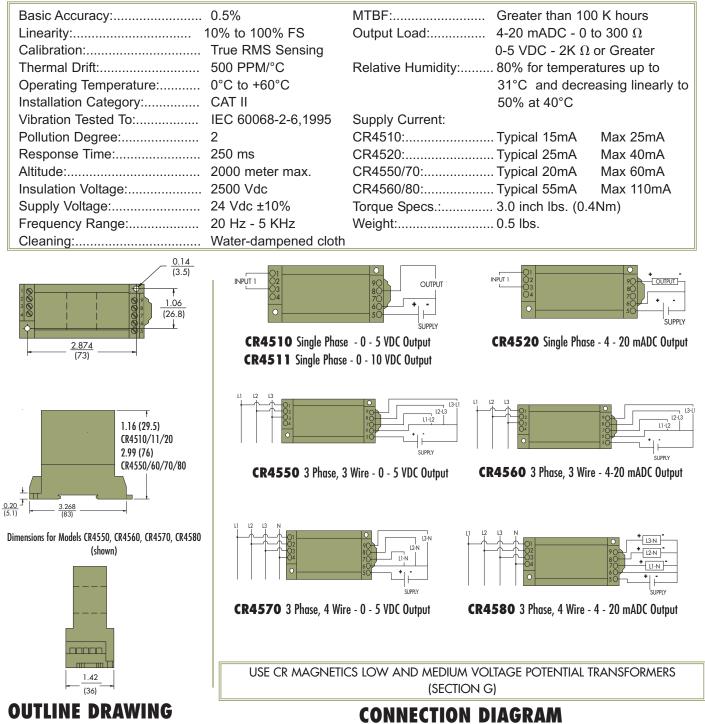
] Add suffix for input range

 50
 0-50 VAC

 150
 0-150 VAC

 250
 0-250 VAC

 500
 0-500 VAC


 Ranges available up to and including 600 VAC

* UL Recognized up to 300 Vac

CR Magnetics has a wide selection of Potential Transformers to extend the range of any part. Contact factory for more information.

DIN RAIL / PANEL MOUNT, TRUE RMS

SPECIFICATIONS

NOTE: The building installation must have a switch or circuit-breaker that is in close proximity and within easy reach of the operator. The switch or circuit breaker shall be marked as the disconnecting device for the equipment.

Single Element Transmitter 1.0 to 600 VAC Input Range

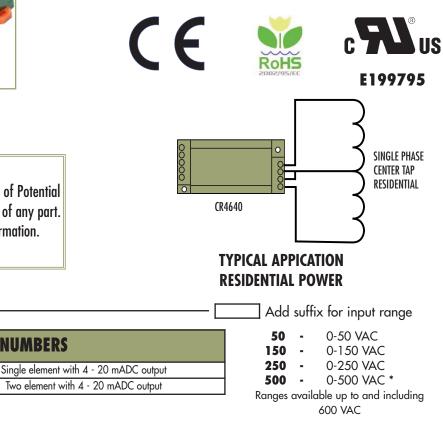
Two Element Transmitter 1.0 to 600 VAC Input Range

CR Magnetics has a wide selection of Potential Transformers to extend the range of any part. Contact factory for more information.

PART NUMBERS

The **CR4600** Series, Loop-Powered AC Voltage Transmitters are designed to provide a 4 - 20 mADC output that is proportional to the average RMS AC voltage input. These devices are best suited for general applications, such as fixed frequency voltage supplies.

Applications


Monitor for over/under voltage Sense phase loss Power monitoring Multi-point instrumentation needs

Features

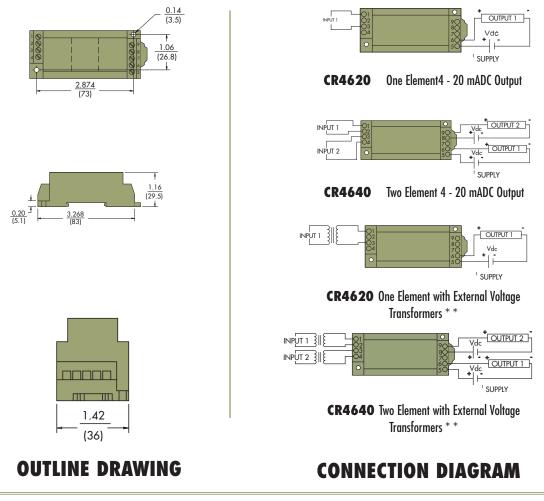
35mm DIN Rail or Panel Mount Outputs isolated from inputs One or two element Connection diagram printed on case

Regulatory Agencies

Recognized to meet UL 61010B-1 Constructed to meet CAN/CSA-C22.2, No. 61010-1-2004 Meets requirement of IEC 61010-1 and BS EN 61010-1

* UL Recognized up to 300 Vac

CR4620


CR4640

-

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com E-mail: sales@crmagnetics.com 42

SPECIFICATIONS

Basic Accuracy: 0.5%	Cleaning: Water-dampened cloth
Calibration: Average Sensing, RMS Calibrated	MTBF: Greater than 100 K hours
Thermal Drift: 500 PPM/°C	Frequency Range: 20 Hz - 400 Hz
Operating Temperature: 0°C to + 60°C	Typical Load:
Installation Category: CAT II	Relative Humidity: 80% for temperatures up to
Vibration Tested To: IEC 60068-2-6,1995	31°C and decreasing linearly to
Pollution Degree: 2	50% at 40°C
Response Time: 250 ms	Torque Specs.: 3.0 inch lbs. (0.4Nm)
Altitude: 2000 meter max.	Weight: 0.5 lbs.
Insulation Voltage: 2500 VDC	-
Supply Voltage:Loop Powered 24 Vdc ±10%	

** USE CR MAGNETICS LOW AND MEDIUM VOLTAGE POTENTIAL TRANSFORMERS (SECTION G)

NOTE: The building installation must have a switch or circuit-breaker that is in close proximity and within easy reach of the operator. The switch or circuit breaker shall be marked as the disconnecting device for the equipment.

1.0 to 600 VAC Input Range

Three Element 1.0 to 600 VAC Input Range

The CR4800 Series, Average RMS Voltage Transducers and				
Transmitters are designed to provide a DC output proportional				
to the AC voltage input. These devices are best suited for				
general applications, such as fixed frequency voltage supplies.				

Applications

Monitor Motor Faults Monitor Heating Elements Monitor Lighting Elements Remote Voltage Sensing

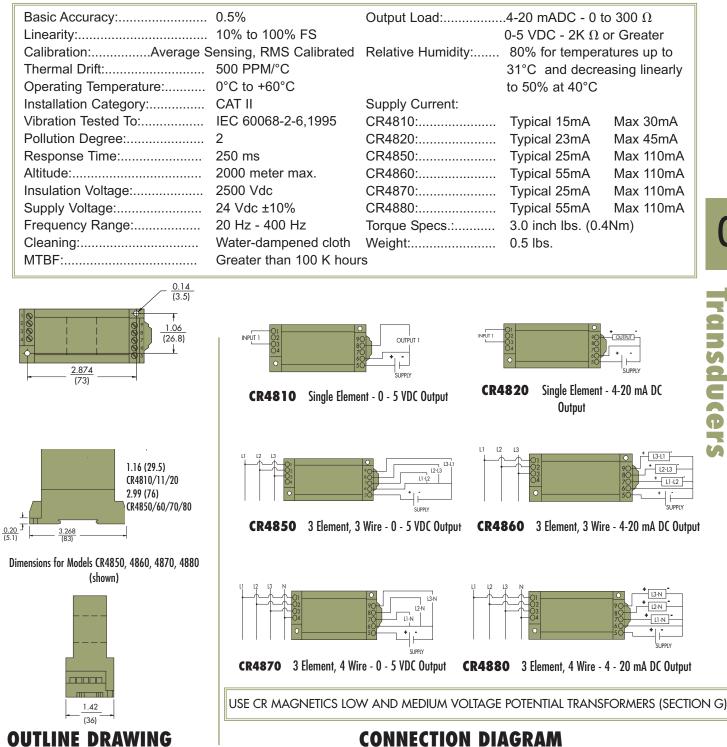
Features

35mm DIN Rail or Panel Mount Available with 0-5 Vdc, 0-10Vdc or 4-20 mADC outputs 24 Vdc powered Outputs isolated from inputs Connection diagram printed on case

Regulatory Agencies

Recognized to meet UL 61010B-1 Constructed to meet CAN/CSA-C22.2, No. 61010-1-2004 Meets requirement of IEC 61010-1 and BS EN 61010-1

Add suffix for input range


50	-	0-50	VAC	
150	-	0-150	VAC	
250	-	0-250	VAC	
500	-	0-500	VAC	
Ranges	avail	able up to	and inclu	ding
		600 VAC	2	
* UL Recognized up to 300 Vac				

	PART NUMBERS				
CR4810	•		Single Element with 0 - 5 VDC output		
CR4811	•		Single Element with 0 - 10 VDC output*		
CR4820	•		Single Element with 4 - 20 mADC output		
CR4850	-		3-Element 3-Wire with 0 to 5 VDC Output		
CR4860	-		3-Element 3-Wire with 4 - 20 mADC Output		
CR4870	•		3-Element 4-Wire with 0 to 5 VDC Output		
CR4880	-		3-Element 4-Wire with 4 - 20 mADC Output		
	* CR4811 Series not UL Recognized				

CR Magnetics has a wide selection of Potential Transformersto extend the range of any part. See Section G for details.

SPECIFICATIONS

NOTE: The building installation must have a switch or circuit-breaker that is in close proximity and within easy reach of the operator. The switch or circuit breaker shall be marked as the disconnecting device for the equipment.

DIN RAIL / PANEL MOUNT, RMS

Single Element - .79" Window 0.1 to 600 ADC Input Range

Single Element - 1.2" Window 20 to 600 ADC Input Range

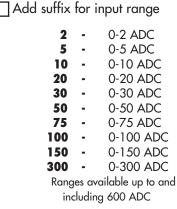
The **CR5200** Series, DC Current Transducers are designed to provide a DC signal which is proportional to a DC sensed current. These devices are designed for direct current only, targeting them towards general and daily applications. The ranges 2 to 10 Amp utilize an advanced Magnetic Modulator technology and the ranges 20 amps and above utilize Hall Effect technology.

Applications

Battery chargers and systems DC motor drives Power supply management Mobile applications

Features

Closed loop sensing for accuracy 35mm DIN rail or panel mount Available with ±5 VDC, ±10 VDC or 4 - 20 mADC outputs Non-contact DC current sensing Connection diagram printed on case

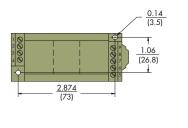

Regulatory Agencies

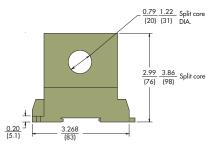
Constructed to meet UL 61010B-1 Constructed to meet CAN/CSA-C22.2, No. 61010-1-2004 Meets requirement of IEC 61010-1 and BS EN 61010-1

Contact Factory for Custom ±5 VDC, ±10 VDC or 4 - 20 mADC Output Options All single phase current transducers are available in split core design. Simply put an "S" at the end of the prefix* I.E. CR5210S-30

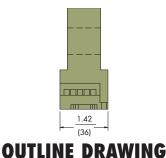
PART NUMBERS				
CR5210(S)	•		Single Element with ± 5 VDC output (split core design)	
CR5211(S)			Single Element with ± 10 VDC output (split core design)	
CR5220(S)	•		Single Element with 4 - 20 mADC output (split core design)	
NOTE: DC Split Core Transducers Available in 20 Amps and Higher				
NOTE: CR5200 Series is available with 12V Power Supply. Use same application as 24V Power Supply.				
		Exe	ample Part Number: CR5210-300-12V	

DIN RAIL / PANEL MOUNT, RMS


Basic Accuracy:	1.0 %	MTBF:
Linearity:	10% to 100% FS	Output Load:
Thermal Drift:	500 PPM/°C	
Operating Temperature:	0°C to +50°C	Relative Humidity:
Installation Category:	CAT II	
Vibration Tested To:	IEC 60068-2-6,1995	
Pollution Degree:	2	Supply Current:
Response Time:	250 ms	CR5210:
Altitude:	2000 meter max.	CR5210S:
Insulation Voltage:	2500 VDC	CR5220:
Supply Voltage:	24 VDC ±10%	CR5220S:
Frequency Range:	DC Only	Torque Specs.:
Cleaning:	Water-dampened cloth	Weight:
-		-


SPECIFICATIONS

MTBF:	Greater than 10	
Output Load:	4-20 mADC - 0	to 300 Ω
	0-5 VDC - 2K Ω	or Greater
Relative Humidity:	80% for temperat	tures up to
	31°C and decrea	sing linearly to
:	50% at 40°C	
Supply Current:		
CR5210:	Typical 35mA	Max 40mA
CR5210S:	Typical 30mA	Max 35mA
CR5220:	Typical 60mA	Max 100mA
CR5220S:	Typical 40mA	Max 50mA
Torque Specs.:	3.0 inch lbs. (0.	4Nm)
Weight:	0.5 lbs.	


90 80 70

OUTPUT

1 hole: 0.79(20) Dia. for CR5210 & 5220 (shown)

-CR5210 5 VDC Output CR5211 10 VDC Output + Output -CR5220 4 - 20 mADC Output

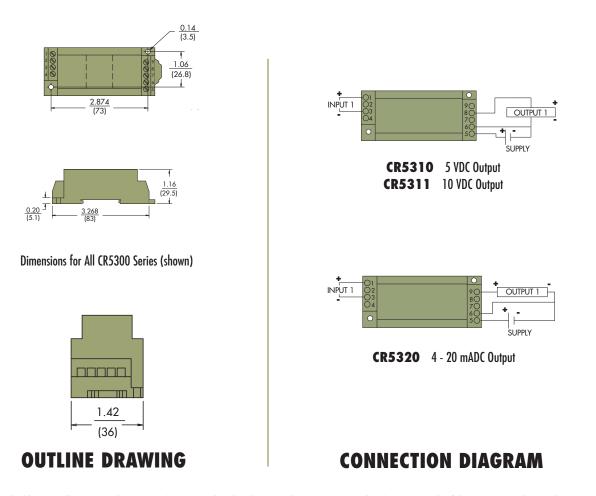
CONNECTION DIAGRAM

NOTE: The building installation must have a switch or circuit-breaker that is in close proximity and within easy reach of the operator. The switch or circuit breaker shall be marked as the disconnecting device for the equipment.

3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com47E-mail: sales@crmagnetics.com

) 3) 4 (

IN RAIL / PANEL MOUNT, RMS	The CR5300 Series, DC Voltage Transducers and Transmitters, are designed to provide an output DC signal that is proportional to the input DC voltage. These devices are especially suited for applications with a current shunt to monitor DC current.		
	Applications Power Supply over/under sensing Battery chargers and systems Mobile applications Power sensing		
CR5310 CR5311 CR5320 Single Element 0.1 - 600 VDC Input Range	Features Output isolated from input Available with 0-5 VDC, 0-10 VDC or 4 - 20 mADC outputs 35mm DIN rail or panel mount Connection diagram printed on case		
If you need a relay output, use a CR3395 . See Section for Details.	Regulatory Agencies Recognized to meet UL 61010B-1 Constructed to meet CAN/CSA-C22.2, No. 61010-1-2004 Meets requirement of IEC 61010-1 and BS EN 61010-1		
CR5310 with Resistor Application is shown below (optional).	$\begin{array}{c} \mathbf{C} \in \mathbf{C} \\ \mathbf{E} \\ $		
	Add suffix for input range		
PART NUMBERS	5 - 0-5 VDC 10 - 0-10 VDC		
CR5310 - Single Element with	h ± 5 VDC output 50 - 0-50 VDC		
CR5311 - Single Element with	1 ± 10 VDC output 150 - 0-150 VDC 200 - 0-200 VDC		
	4 - 20 mADC output Ranges available up to and including		
NOTE: CR5300 Series is available with 12V Power Supply. Use same Example Part Number: CR5310-300-1	application as 24V Power Supply.		



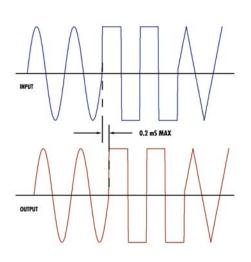
DIN RAIL / PANEL MOUNT, RMS

Basic Accuracy: Linearity: Thermal Drift: Operating Temperature: Installation Category: Vibration Tested To: Pollution Degree: Altitude: Response Time: Insulation Voltage: Cleaning:	1.0 % 10% to 100% FS 500 PPM/°C 0°C to +50°C CAT II IEC 60068-2-6,1995 2 2000 meter max. 250 ms. max. 2500 VDC Water-dampened cloth

SPECIFICATIONS

Supply Voltage:	. 24 VDC ±10%	
Frequency Range:	. DC only	
Output Load:	. 4-20 mADC - 0 t	ο 300 Ω
	0-5 VDC - 2K Ω	or Greater
Relative Humidity:	80% for tempera	atures up to
	31°C and decrea	asing linearly
	to 50% at 40°C	
Supply Current:		
CR5310:	. Typical 35mA	Max 40mA
CR5320:	. Typical 35mA	Max 40mA
Torque Specs.:	. 3.0 inch lbs. (0.4	Nm)
Weight:	. 0.5 lbs.	

NOTE: The building installation must have a switch or circuit-breaker that is in close proximity and within easy reach of the operator. The switch or circuit breaker shall be marked as the disconnecting device for the equipment.



AC/DC Hall Effect Current Transducer

DIN RAIL / PANEL MOUNT, TRACING OUTPUT

Single Element - .79" Window 20 TO 600 AAC/DC Input Range

TYPICAL TRACKING FUNCTION

The **CR5400** Series, AC/DC Hall Effect Current Transducers, are designed to provide a bipolar output that proportionally reflects (traces) the waveform of the input current. These devices are specifically targeted to be used in applications where multi-mode current sensing is required.

Applications

Inverter and multi-frequency drives Multi-mode ground paths carrying both AC and DC signals Feed back loop building block

Features

Output isolated from input Non-contact current sensing 35mm DIN Rail or Panel Mount Connection diagram printed on case

Regulatory Agencies

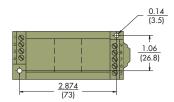
Constructed to meet UL 61010B-1 Constructed to meet CAN/CSA-C22.2, No. 61010-1-2004 Meets requirement of IEC 61010-1 and BS EN 61010-1

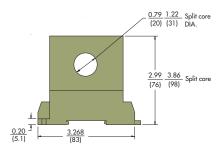
All single phase current transducers are available in split core design. Simply put an "S" at the end of the prefix* I.E. CR5410S-30

PART NUMBERS				
CR5410(S)	•		Single Element with ± 5 VAC/DC output (split core design)	
CR5411(S)	•		Single Element with ± 10 VAC/DC output (split core design)	
	NOTE: AC/DC Split Core Transducers Available in 20 Amps and Higher			

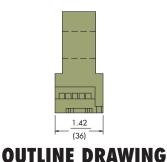
20 - ±20 AAC/ADC 30 - ±30 AAC/ADC 50 - ±50 AAC/ADC 75 - ±75 AAC/ADC 100 - ±100 AAC/ADC 150 - ±150 AAC/ADC 300 - ±300 AAC/ADC Ranges available up to and including 600 AAC/ADC

Add suffix for input range


 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119


 Web: http://www.crmagnetics.com
 50
 E-mail: sales@crmagnetics.com

DIN RAIL / PANEL MOUNT, TRACING OUTPUT


SPECIFICATIONS

Basic Accuracy:	1.0 %	Frequency Range:	.DC to 4 KHz	
Linearity:	10% to 100% FS	Output:	±5 Vac/DC or ±10	Vac/DC
Thermal Drift:	500 PPM/°C	Output Load:	. 2 K Ω or greater	
Operating Temperature:	0°C to +50°C	Relative Humidity:	. 80% for tempera	atures up to
Installation Category:	CAT II		31°C and decrea	asing linearly
Vibration Tested To:	IEC 60068-2-6,1995		to 50% a	at 40°C
Pollution Degree:	2	Supply Current:		
Altitude:	2000 meter max.	CR5410:	. Typical 35mA	Max 40mA
Insulation Voltage:	2500 VDC	CR5410S:	Typical 30mA	Max 35mA
Cleaning:	Water-dampened cloth	Torque Specs.:	. 3.0 inch lbs. (0.4	Nm)
MTBF:	Greater than 100K hours	Weight:	. 0.5 lbs.	
Supply Voltage:	24 VDC ±10%			

1 hole: 0.79(20) Dia. for CR5410 (shown)

01 0 02 1 03 1 04 1 0 50 4 1 0 50 4 1 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 4 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50

 CR5410
 ±5 VAC/VDC Output

 CR5411
 ±10 VAC/VDC Output

÷

CONNECTION DIAGRAM

Power Supply

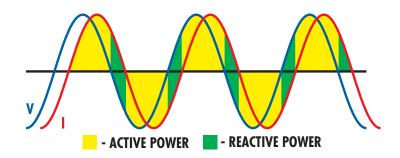
NOTE: The building installation must have a switch or circuit-breaker that is in close proximity and within easy reach of the operator. The switch or circuit breaker shall be marked as the disconnecting device for the equipment.

DIN RAIL / PANEL MOUNT, ACTIVE / REACTIVE

CR Magnetics has a wide selection of Current and Potential Transformers to extend the range of any part. The **CR6200** Series, Power Transducers and Transmitters are designed to provide a controlled output that is proportional to the average power. These devices are specifically targeted to provide an efficient solution to most power sensing needs. Units are designed for operation in systems with sinusoidal voltage and current wave forms.

Applications

Energy Management Motor Efficiency Multi-point power sensing Remote power sensing over long distances


Features

35mm DIN Rail or Panel Mount Ranges available for any power sensing need Active and Reactive power sensing 0 - 5 VDC and 4 - 20 mADC outputs Connection diagram printed on case

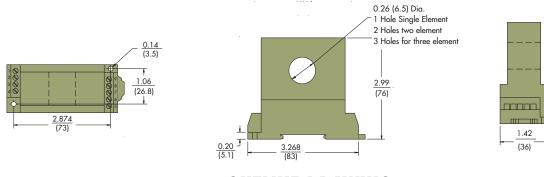
Regulatory Agencies

Recognized to meet UL 61010B-1 Constructed to meet CAN/CSA-C22.2, No. 61010-1-2004 Meets requirement of IEC 61010-1 and BS EN 61010-1

POWER TRANSDUCERS CAN BE ORDERED TO MEASURE ACTIVE OR REACTIVE POWER

3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com52E-mail: sales@crmagnetics.com

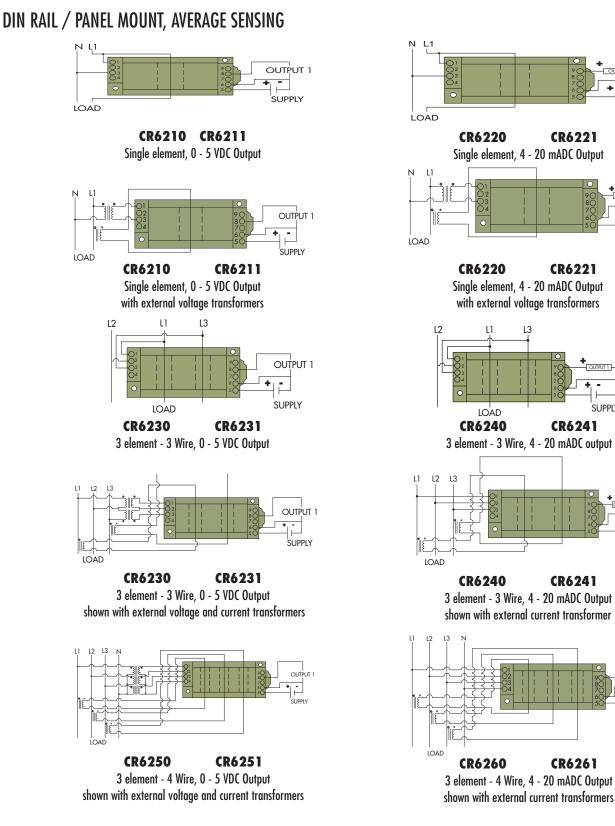
to extend the range of any part.


DIN RAIL / PANEL MOUNT, ACTIVE / REACTIVE

					Add suffix for input range
		I	PAR	T NUMBERS	
CR6210	•	-		1 Phase, Active Power with 0 - 5 VDC Output	
CR6211	•	-		1 Phase, Reactive Power with 0 - 5 VDC Output	150 - 0-150 VAC
CR6220	•	-		1 Phase, Active Power with 4 - 20 mADC Output	250 • 0-250 VAC
CR6221	-	-		1 Phase, Reactive Power with 4 - 20 mADC Output	500 - 0-500 VAC *
CR6230	-	-		3-Phase, 3-Wire, Active Power with 0 - 5 VDC Output	Custom ranges available * not UL recognized
CR6231	-	-		3-Phase, 3-Wire, Reactive Power with 0 - 5 VDC Output	
CR6240	-	-		3-Phase, 3-Wire, Active Power with 4 - 20 mADC Output	
CR6241	-	-		3-Phase, 3-Wire, Reactive Power with 4 - 20 mADC Output	5 - 0-5 AAC
CR6250	-	-		3-Phase, 4-Wire, Active Power with 0 - 5 VDC Output	
CR6251	-	-		3-Phase, 4-Wire, Reactive Power with 0 - 5 VDC Output	
CR6260	-	-		3-Phase, 4-Wire, Active Power with 4 - 20 mADC Output	CR Magnetics has a wide selection of
CR6261	-	-		3-Phase, 4-Wire, Reactive Power with 4 - 20 mADC Output	current and potential transformers

SPECIFICATIONS

Basic Accuracy:	
Linearity:	. 10% to 100% FS
Thermal Drift:	. 500 PPM/°C
Operating Temperature:	. 0°C to +60°C
Installation Category:	CAT II
Vibration Tested To:	IEC 60068-2-6,1995
Pollution Degree:	2
Response Time:	. 250 ms max. 0-90% FS
Supply Voltage:	. 12 to 24 VDC
MTBF:	Greater than 100 K hours.
Frequency Range:	.50 Hz - 400 Hz, sine wave
Insulation Voltage:	2500 VDC
Altitude:	2000 meter max.Output
Load:	4-20 mADC -0 to 300 Ω
	0-5 VDC - 2K Ω or Greater


Cleaning:	Water-dampened	d cloth
Relative Humidity:	80% for tempera	tures up to
	31°C and decrea	asing linearly
	to 50% at 40°C	
Supply Current:		
CR6210:	Typical 35mA	Max 45mA
CR6220:	Typical 75mA	Max 110mA
CR6230:	Typical 50mA	Max 70mA
CR6240:	Typical 75mA	Max 110mA
CR6250:	Typical 50mA	Max 70mA
CR6260:	Typical 75mA	Max 120mA
Torque Specs.:	3.0 inch lbs. (0	.4Nm)
Weight:	0.5 lbs.	

OUTLINE DRAWING

NOTE: The building installation must have a switch or circuit-breaker that is in close proximity and within easy reach of the operator. The switch or circuit breaker shall be marked as the disconnecting device for the equipment.

CONNECTION DIAGRAMS

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com E-mail: sales@crmagnetics.com 54

÷

CR6221

CR6221

CR6241

CR6241

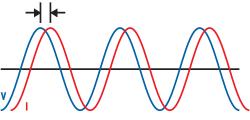
CR6261

SUPPLY

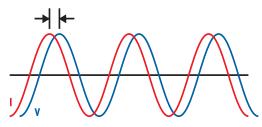
L1

LOAD

L3


vlaquZ

OUTPUT 1


DIN RAIL / PANEL MOUNT, AVERAGE SENSING

0 - 5 VDC, 0 - 10 VDC, 4 - 20 mADC Outputs

INDUCTIVE - CURRENT LAGGING VOLTAGE

CAPACITIVE - CURRENT LEADING VOLTAGE

The **CR6300** Series, Power Factor Transducers, are designed to sense the Phase Angle difference between AC Current and Voltage signals.

Applications

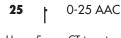
Motor Loading Correct Power Factor Measure Timing

Features

Bandwidth is 5 KHz Up to 500V Input on Voltage Up to 25A Input on Current Extend Ranges with External CT's & PT's Measure -90 to +90 Phase Difference Available with 0-5 VDC, 0-10 VDC or 4-20 mADC Outputs 35mm DIN Rail or Panel Mount

Regulatory Agencies

Constructed to meet UL 61010B-1 Constructed to meet CAN/CSA-C22.2, No. 61010-1-2004 Meets requirement of IEC 61010-1 and BS EN 61010-1



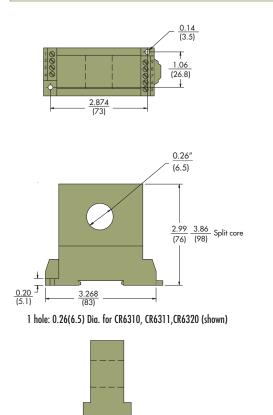
Custom units can measure the phase angle difference between two AC Voltages or two AC currents are available. Contact factory for details.

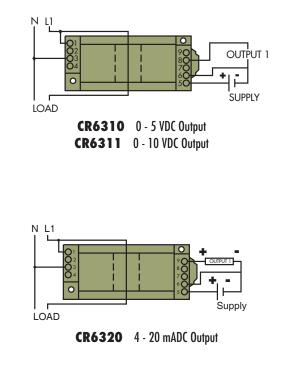
			PART NUMBERS
CR6310	•	- 1	Single Element with 0 - 5 VDC Output
CR6311	-	-	Single Element with 0 - 10 VDC Output
CR6320	•	-	Single Element with 4 - 20 mADC Output
put range		 •	

Add suffix for input range

110	-	0-110 VAC	
220	-	0-220 VAC	
500	-	0-500 VAC *	
Ranges available up to and			
including 600 VAC			

Use a 5 amp CT to extend the range of this product line


 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119


 Web: http://www.crmagnetics.com
 55
 E-mail: sales@crmagnetics.com

DIN RAIL / PANEL MOUNT, AVERAGE SENSING

Basic Accuracy:	. 0.5%	Insulation Voltage:	2500 VDC
Linearity:	10% to 100% FS	Altitude:	2000 meter max.
Thermal Drift:	500 PPM/°C	Output Load:	4-20 mADC -0 to 300 Ω
Operating Temperature:	0°C to +60°C		0-5 VDC - 2K Ω or Greater
Installation Category:	. CAT II	Cleaning:	Water-dampened cloth
Vibration Tested To:	. IEC 60068-2-6,1995	Relative Humidity:	80% for temperatures up to
Pollution Degree:	2		31°C and decreasing linearly
Response Time:	250 ms max. 0-90% FS		to 50% at 40°C
Supply Voltage:	12 to 24 VDC	Torque Specs.:	3.0 inch lbs. (0.4Nm)
MTBF:	Greater than 100 K hours	Weight:	0.5 lbs.
Frequency Range:	50 Hz - 400 Hz, sine wave		

SPECIFICATIONS

OUTLINE DRAWING

<u>1.42</u> (36)

CONNECTION DIAGRAM

NOTE: The building installation must have a switch or circuit-breaker that is in close proximity and within easy reach of the operator. The switch or circuit breaker shall be marked as the disconnecting device for the equipment.

3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com56E-mail: sales@crmagnetics.com

DIN RAIL / PANEL MOUNT

The **CR6600** Series, Frequency Transducers and Transmitters are designed to give a DC output that is proportional to an input frequency value. These devices are especially suited to variable frequency systems.

Applications

Outputs isolated from inputs Ranges available for any application Sine, square and zero crossover waveforms 35 DIN rail or panel mount Connection diagram printed on case

Features

35mm DIN Rail or Panel Mount Available with 0 - 5 VDC, 0 - 10, or 4 - 20 mADC output 24 VDC powered Use with external current transformers Highest precision available Connection diagram printed on case

Regulatory Agencies

Constructed to meet UL 61010B-1 Constructed to meet CAN/CSA-C22.2, No. 61010-1-2004 Meets requirement of IEC 61010-1 and BS EN 61010-1

Custom calibrations of unique full scale and zero scale values including parametric measurements are available. Contact factory for details.

Add suffix for input range

 100
 0-100 Hz

 500
 0-500 Hz

 5000
 0-5000 Hz

 other ranges available

	PART NUMBERS				
CR6610	-		Sine wave sensing with 0 - 5 VDC Output		
CR6611	-		Square wave sensing with 0 - 5 VDC Output		
CR6612	-		Zero crossover sensing with 0 - 5 VDC Output		
CR6620	-		Sine wave sensing with 4 - 20 mADC Output		
CR6621	-		Square wave sensing with 4 - 20 mADC Output		
CR6622	-		Zero crossover sensing with 4 - 20 mADC Output		

CR6610

CR6611 CR6612 CR6620

CR6621 CR6622

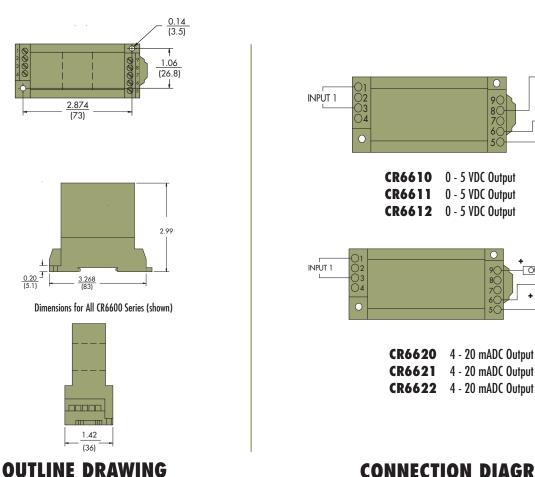
40 - 5000 Hz Input Range

SINE WAVE SENSING

SQUARE WAVE SENSING

= AVG (f.)

Γ


ZERO CROSS SENSING

DIN RAIL / PANEL MOUNT

Basic Accuracy: 0.5% Linearity: 10% to 100% FS	Output Load: 4-20 mADC -0 to 300 Ω 0-5 VDC - 2K Ω or Greater
Thermal Drift: 500 PPM/°C	Cleaning: Water-dampened cloth
Operating Temperature: 0°C to +60°C	Relative Humidity: 80% for temperatures up to
Installation Category: CAT II	31°C and decreasing linearly
Vibration Tested To: IEC 60068-2-6,1995	to 50% at 40°C
Pollution Degree:2	Input Voltage:
Response Time: 250 ms max. 0-90% FS	(other voltage ranges available)
Supply Voltage: 12 to 24 VDC	Supply Current:
MTBF:Greater than 100 K hours	CR6610: Typical 30mA Max 40mA
Frequency Range:50 Hz - 400 Hz, sine wave	CR6620: Typical 50mA Max 95mA
Insulation Voltage: 2500 VDC	Torque Specs.: 3.0 inch lbs. (0.4Nm)
Altitude: 2000 meter max.	Weight: 0.5 lbs.

SPECIFICATIONS

CONNECTION DIAGRAM

90

80 70

9(8(7(

OUTPUT 1

-

SUPPLY

OUTPUT

SUPPLY

NOTE: The building installation must have a switch or circuit-breaker that is in close proximity and within easy reach of the operator. The switch or circuit breaker shall be marked as the disconnecting device for the equipment.

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 E-mail: sales@crmagnetics.com Web: http://www.crmagnetics.com 58

Sensing Relays and Switches

CR Magnetics Sensing Relays and Switches provide a simple method of monitoring electrical properties and alerting a system to a fault or event condition. These products are available with a wide variety of configurations, including time delays, various output styles and logic. From simple proving switches, to fully featured high performance ground fault sensing, our relays and switches will provide the designer with the tools needed to implement many different control and event sensing schemes.

The **CR4395** Series of **AC Current Sensing Relays** are designed to provide a contact output that becomes active when the setpoint AC Current is reached. Available in active high or active low, this relay is a fully featured product, with an adjustable activation delay, adjustable setpoint, dry contact relay or solid state outputs, and remote sensing capabilities.

The **CR5395** Series of **DC Current Sensing Relays** are designed to provide a contact output that becomes active when the setpoint DC Current is reached. Similar to the CR4395, this product includes adjustable activation delay, adjustable setpoint, and choice of output styles. An important feature of this design is the use of a magnetic modulator to detect the magnetic fields generated by current in the conductor. This enables the use of torroid current transformer technology that inherently rejects the effects of outside magnetic influences. Hall effects and other types of technologies must be on-site calibrated to adjust for stray magnetic fields present in most industrial applications.

The **CR7310 Ground Fault Sensor** provides an easy method in realizing equipment AC ground fault protection. Using the same footprint as our other fully featured products, the **CR7310** can sense currents down to 10 mAAC and up to 100 AAC. Various power supplies, current ranges, and sensor configurations are available.

The **CR3395** and **CR3495 Process Alarms** are products that can be added to standard analog process signals and create alarms and level indication. Adjustable time delays, various power supplies, current ranges, and sensor configurations are available.

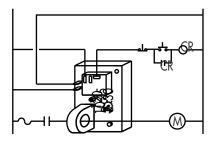
The **CR9300**, **CR9400**, **CR9500** and **CR9600** Current Switches and Sensors are go/no-go proving switches that are self powered with solid state dry contact modeled outputs. Output styles are designed to provide the highest current switching capability possible at the lowest possible switchpoint. Normally closed and normally open logic are available.

 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119

 Web: http://www.crmagnetics.com
 59
 E-mail: sales@crmagnetics.com

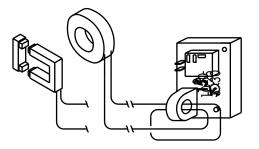
Selection Guide

AC Current Sensing	V	V	~			~	~	1 CP02	~	~	~	~	~	V	
DC Current Sensing		~		~											Ϋ́
DC Voltage Sensing					~										SENSE
Ground Fault			V												
Relay Output	V	~	V	~	~										
Solid State Output	v	~	~	~	~	~	~	~	~	~	~	~	~	~	
Time Delay	v	~	~	~	~										
Adjustable Setpoint	v	~	~	~	~										APP
Wire Mount						~	~	~	~	~	~	~	~	~	APPLICATIONS
DIN Rail Mount				~	~										SNO
Panel Mount	~	~	~	~	~		~	~		~	~	~	~	~	
Remote Sensing	~	~	~												
Split Core								v			V	v	v	~	
UL/CSA Approved	V		v												AGENCY
RoHS Compliant	V	~	v	~	~	v	v	v	v	~	~	v	v	~	NQ
4395 - AC CURRENT 5395 - DC CURRENT 7310 - GROUND FAULT LOGIC EH - ENERGIZE HIGH LH - LATCH HIGH EL - ENERGIZE LOW	240 24D) - 120 V) - 240 V) - 24VD) - 80 TO	AC	c	.011 - 1 .11 - 10 110 - 1 330 - 3 660 - 6 101 - 1 * - 7310	0 mA to A to 10 A to 30 A to 60 O A to 10	1 A* A A A	T A B		6 SEC 25 SEC		NT OUT ELR NPN	PUT ST - Form (i - Isola - Isolat	C RELAY TED TRA	ERN/ MOT
LL - LATCH LOW	ORDE	RIN	G FO	R CF	1339	5, C	R34		(- NO DI		AND	CR9	9600		
	Π						CR		-		-				

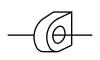


3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com

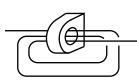
60


Typical Applications

TYPICAL RELAY APPLICATIONS


MOTOR OVER / UNDER MOTOR

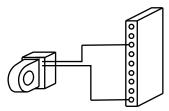
The relay may be used to monitor the operational load of a motor. One leg of the motor wiring is routed through the window opening. With the "EH" (Energized on High) trip status, when the motor current draw exceeds the trip point, the relay will energize and open the starter motor. The time delay would be set long enough to inhibit tripping during high inrush starting current. Note that an electrical fuse and other overload devices will be required for complete motor protection.



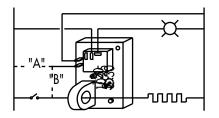
EXTERNAL CURRENT TRANSFORMERS

The relay may be used with an external split or solid-core current transformer. The external transformer can be used to access remote loads or where the current-carrying wire is too large to fit through the window opening in the relay. A standard, 5 amp secondary, commercial grade current transformer (Section F, Pages 94-107) would be attached with the secondary leads threaded twice through the window opening, as illustrated. The trip range option -110 (1.0 to 10 ACA) would then provide full-scale adjustment for the transformer.

ONE WIRE PASS


THREE WIRE PASS

The trip ranges shown on Page 63 represent on wire pass through the window opening. The trip range may be changed by threading the current-carrying wire through the window opening several times, as shown above. The "actual" trip range would be the relay name plate range divided by the number of wire passes through the opening. I.E. a name plate range of -660 (6.0 to 60 ACA) with three wire passes would provide an actual range of 2.0 to 20 ACA (6/3=2.0 & 60/3=20).


CONNECTION TO INDICATOR LAMP

The current switch may be used to directly an indicating lamp. When using the AC output version, either of the two black leads may be attached to the power source. A snubber network is required when connecting to a indictive device such as a eletromechanical relay.

CONNECTION TO PLC

The current switch may be connected directly to a PLC. Supply power may be provided from the PLC, as shown, or from an external power source. When using a transistor output, the negative or black lead from the switch is attached to the negative side of the supply.

OPEN HEATER / LAMP DETECTOR

The relay may be used to provide an alarm signal to indicate an open heater element. The current-carrying wire is routed through the window opening. With the "EL" (Energized on Low) current status option, when the heater element draws current above the trip point, the relay remains de-energized. If the element becomes open, the current level will be reduced causing the relay to become energized. Supply power is constantly supplied to the relay with the "A" connection and the relay will cycle every time the temperature controller cycles. Using the alternate connection with line "B", power is provided to the relay only when the temperature controller is cycled on. With this connection, the relay will energize only when the element is open.

3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com61E-mail: sales@crmagnetics.com

D

Current Sensing Relay

CR4395 Series

OUTPUT OPTIONS

The Relay is available with three different output configurations, electromechanical relay, optoisolated NPN transistor or optoisolated triac. Specify desired selection in part number.

RELAY (-ELR)

Arrangement: 1 Form C (SPDT) Contact Material: Silver-cadmium oxide Terminals: 3^{1/4°} Male QC Mechanical Life: 10 million operations, typ.@ rated load Electrical Life: 100,000 operations, typ. @ rated load Initial Contact Resistance: 50 milliohms max. @ 500 mA, 12 VDC Contact Rating: UL508/873 & CSA

DC SWITCHING (-NPN)

Vce (full off): 30 VDC max. Isink (full on): 120 mADC max.@ rated full-on Vce (full on): 1.5 VDC @ 120 mADC Isink Off state leakage current: 5ua @ 30 VDC (typical)

AC SWITCHING (-TRC)

Off state voltage: 240 VAC RMS max. Minimum switch voltage: 24 VAC RMS On state current: 0.5 AAC RMS max. continuous Switching mode: Zero crossing Off state leakage: 60 ua @ 240 VAC max. Terminals: 2 @ 1/4" Male QC The **CR4395** Series, Current Sensing Relay provides an effective and highly stable method for monitoring electrical current. The current-carrying wire is routed through the opening extending from the top of the case. When current reaches the level set by the trip point adjustment, the relay trips and starts the adjustable timer. After the timer cycles the electromechanical relay is energized. A precision voltage reference circuit ensures a highly repeatable trip point.

Applications

Monitor Electrical Heater Elements Sense Motor Over/Under Loads Detect Lamp burn-out Indicate Phase Loss

Features

Variable Trip Point and Time Delay Monitors Currents from 1 AC to 100 AC Amps Electrical Isolation Between Circuits Output Relay Rated up to 20 Amps LED Trip Status Indicator Dead Band Prevents Relay Chatter Calibrated Dial Option Available External Current Transformers Available

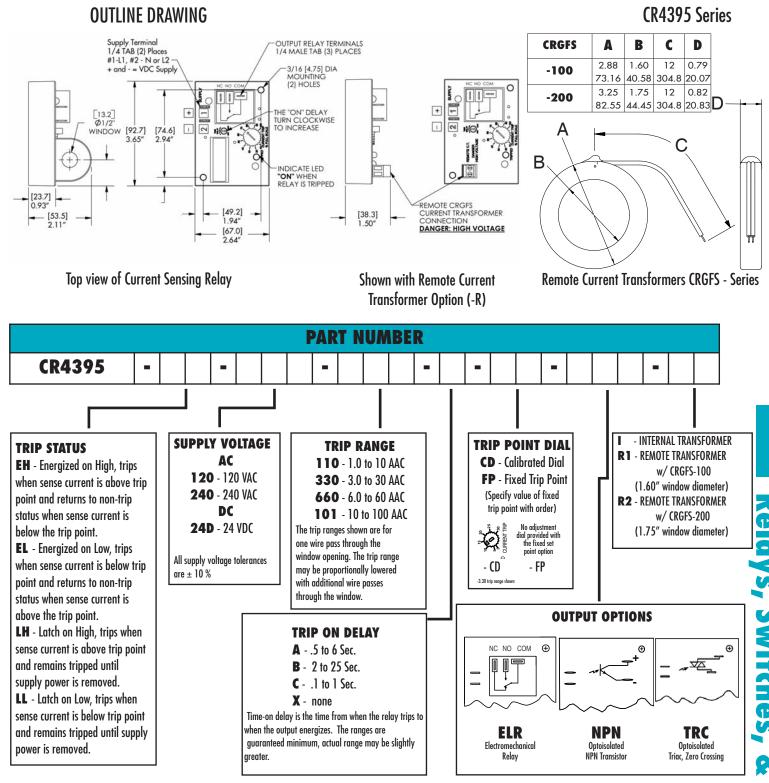
Specifications

Mounting: 3/16'' dia. clearance holes on $1^{15/16''}$ by $2^{15/16''}$ centers Environmental: Operating Temperature: -30° C to +60° C Storage Temperature: -55° C to +85° C Power-On Delay: 100 MS MAX Hysteresis: 5% Max. Input Supply Power: Typical 80mA Max 100mA Sensed Current: Max. Continuous: 200% Full Scale Frequency: 60-400 Hz * *All specifications for operation at 60 Hz only Altitude: 2000 meters max. (Contact factory for High Altitude applications) Weight 0.5 LBS.

Regulatory Agencies

VOLTAGE	LOAD TYPE	N.O. CONTACT	N.C. CONTACT		
240 VAC	Resistive	20A	10A		
240 VAC	Motor	2HP	1/2 HP		
125 VAC	Motor	1 HP	1/4 HP		
28 VDC	Resistive	20A	10A		

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119


Web: http://www.crmagnetics.com

62

E-mail: sales@crmagnetics.com

Relays, Switches, & Sensors

Current Sensing Relay

Example Part Numbers: CR4395-EH-120-110-CD-ELR-I (Relay with CT on board) CR4395-EL-240-330-CD-NPN-R1 (Relay with external CRGFS-100)

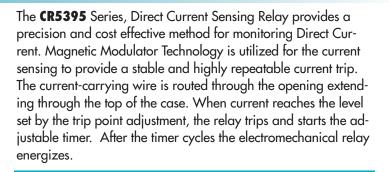
3500 Scarlet Oak Blvd.St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119Web: http://www.crmagnetics.com63E-mail: sales@crmagnetics.com

CR5395 Series

OUTPUT OPTIONS

The Relay is available with three different output configurations, electromechanical relay, optoisolated NPN transistor or ZeroCrossing optoisolated triac. Specify desired selection in part number.

RELAY (-ELR)


Arrangement: 1 Form C (SPDT) Contact Material: Silver-cadmium oxide Terminals: 3^{1/4"} Male QC Mechanical Life: 10 million operations, typ.@ rated load Electrical Life: 100,000 operations, typ. @ rated load Initial Contact Resistance: 50 milliohms max. @ 500 mA, 12 VDC Contact Rating: UL508/873 & CSA

DC SWITCHING (-NPN)

Vce (full off): 30 VDC max. Isink (full on): 120 mADC max.@ rated full-on Vce (full on): 1.5 VDC @ 120 mADC Isink Off state leakage current: 5ua @ 30 VDC (typical) Terminals: 2^{1/4°} Male QC

AC SWITCHING (-TRC)

Off state voltage: 240 VAC RMS max. Minimum switch voltage: 24 VAC RMS On state current: 500 mA RMS max. continuous Switching mode: Zero Crossing Off state leakage: 60 ua @ 240 VAC max. Terminals: 2 @ 1/4" Male QC

Applications

DC motor drives Battery Chargers Power Supply Management Uninterruptible Power Systems Motor Application

Features

Variable Trip Point and Time Delay Bi-polar Monitors Currents from 1.0 ADC to 100 ADC Electrical Isolation Between Circuits Output Relay Rated up to 20 Amps LED Trip Status Indicator Dead Band Prevents Relay Chatter Calibrated Dial External Current Transformers Available

Specifications

Mounting:

3/16'' dia. clearance holes on $1^{15/16''}$ by $2^{15/16''}$ centers

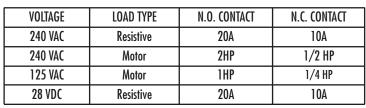
Environmental: Operating Temperature: -30° C to +70° C

Storage Temperature: -55° C to +85°

0-95% RH, Non-condensing

Input Supply Power:

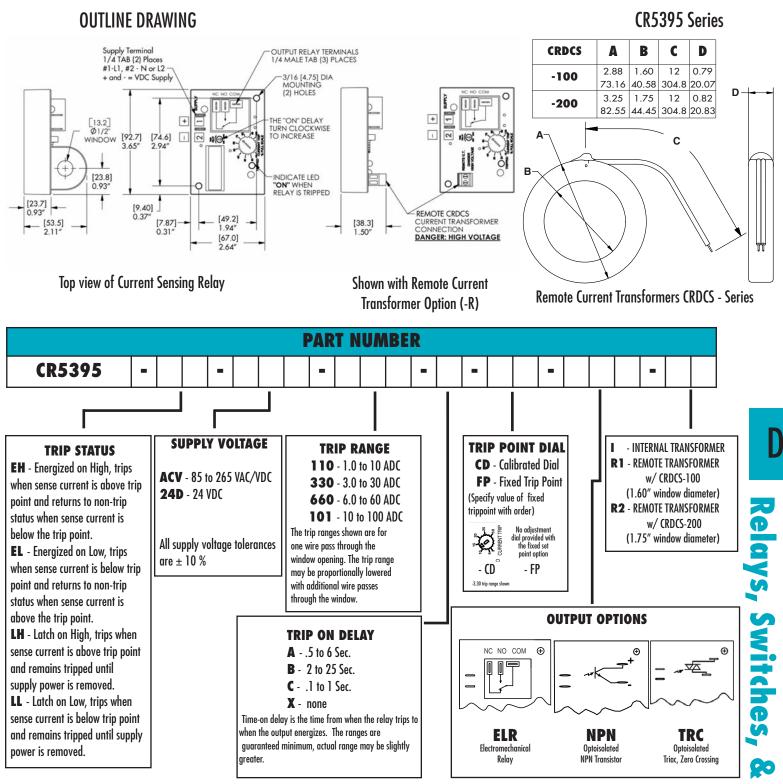
Typical 80mA Max 100mA


Sensed Current: Max. Continuous: 200% Full Scale

Altitude: 2000 meters max.

(Contact factory for High Altitude applications) Weight 0.5 LBS.

Regulatory Agencies



3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

Web: http://www.crmagnetics.com

Relays, Switches, & Sensors

Direct Current Sensing Relay

Example Part Numbers: CR5395-EH-ACV-110-CD-ELR-I (Relay with CT on board) CR5395-EL-24D-330-CD-NPN-R1 (Relay with external CRDCS-100)

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmganetics.com E-mail: sales@crmagnetics.com 65

Ground Fault Sensor

CR7310 Series

OUTPUT OPTIONS

The Relay is available with three different ouput configurations, electromechanical relay, optoisolated NPN transistor or zero-crossing optoisolated triac. Specify desired selection in part number.

RELAY (-ELR)

Arrangement: 1 Form C (SPDT) Contact Material: Silver-cadmium oxide Terminals: 3^{1/4"} Male QC Mechanical Life: 10 million operations, typ.@ rated load Electrical Life: 100,000 operations, typ. @ rated load Initial Contact Resistance: 50 milliohms max. @ 500 mA, 12 VDC Contact Rating: UL508/873 & CSA

DC SWITCHING (-NPN)

Vce (full off): 30 VDC max. Isink (full on): 120 mADC max.@ rated full-on Vce (full on): 1.5 VDC @ 120 mADC Isink Off state leakage current: 5ua @ 30 VDC (typical) Terminals: 2^{1/4"} Male Q C

AC SWITCHING (-TRC)

Off state voltage: 240 VAC RMS max. Minimum switch voltage: 24 VAC RMS On state current: 500 mA RMS max. continuous Switching mode: Zero crossing Off state leakage: 60 ua @ 240 VAC max. Terminals: 2 @ 1/4" Male QC

The **CR7310** Series, Ground Fault Sensor provides a reliable and cost effective method for sensing ground faults. The current-carrying wires are routed through the opening extending from the top of the case. When ground current reaches the level set by the trip point adjustment, the relay trips, illuminates the tripped LED and provides an output signal. A precision voltage reference circuit ensures a highly repeatable trip point. The Sensor is rated as a Class 1 device.

Applications

Monitor Electrical Heater Elements Sense Motor Over/Under Loads Detect Lamp burn-out Indicate Phase Loss

Features

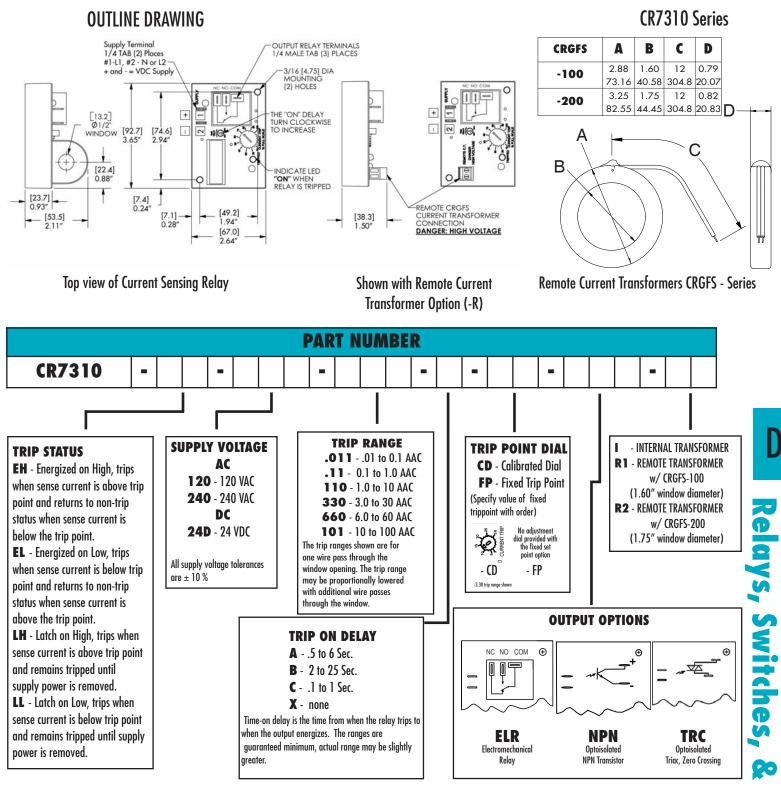
Variable Trip Point and Time Delay Monitors Currents from 10mAAC to 100 AAC Amps Electrical Isolation Between Circuits Output Relay Rated up to 20 Amps LED Trip Status Indicator Dead Band Prevents Relay Chatter Calibrated Dial Option Available External Current Transformers Available

Specifications

Mounting: 3/16'' dia. clearance holes on $1^{15/16''}$ by $2^{15/16''}$ centers Environmental: Operating Temperature: -30° C to +60° C Storage Temperature: -55° C to +85° C Power-On Delay: 100 MS MAX Hysteresis: 5% Max. Input Supply Power: Typical 80mA Max 100mA Sensed Current: Max. Continuous: 200% Full Scale Frequency: 60-400 Hz * *All specifications for operation at 60 Hz only Altitude: 2000 meters max. (Contact factory for High Altitude applications) Weight 0.5 LBS.

Regulatory Agencies

VOLTAGE	LOAD TYPE	N.O. CONTACT	N.C. CONTACT		
240 VAC	Resistive	20A	10A		
240 VAC	Motor	2HP	1/2 HP		
125 VAC	Motor	1 HP	1/4 HP		
28 VDC	Resistive	20A	10A		


3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

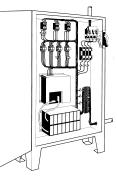
Web: http://www.crmagnetics.com

66

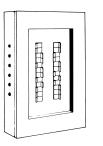
E-mail: sales@crmagnetics.com

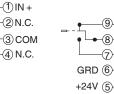
Ground Fault Sensor

Example Part Numbers: CR7310-EH-120-.011-CD-ELR-I (Relay with CT on board) CR7310-EL-240-.11-CD-NPN-R1 (Relay with external CRGFS-100)



3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmganetics.com E-mail: sales@crmagnetics.com 67


CR3395/3495 Series


Process Alarm Switch

Load Center

CONNECTION DRAWING

Control Panel

ORDER INFORMATION					
Part Number	Input Range				
CR3395	4 to 20 mADC				
CR3495	0 to 5 VDC				

INPUT

The CR3395 and CR3495 Series, Process Alarm Switch provides an effective method for signaling alarm status. The Process Alarm Switch can be fed by any 0-5V or 4-20mA process control loop. When the control loop signal exceeds the set point the board LED illuminates and the relay becomes energized.

Applications

Process Control Systems Reporting of Alarm Conditions Monitor Heater Status Monitor Motor Operation

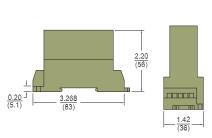
Features

35mm DIN Rail or Panel Mountable Adjustable Dial for Setting Trip Point Super Bright Red LED Indicator for Alarm Status Fully Isolated Input from Power Supply and Output Connection Drawing Printed on Case

Specifications

+24 VDC +/-10% Power Supply Form C Relay, 7A @ 250 VAC, 12A @ 125 VAC, 10A @ 28 VDC Input: 4-20 mADC (CR3395) and 0-5VDC (CR3495) Operating Temperature: 0 to 50°C Weight 0.25 LBS

Regulatory Agencies


N.C.

• COM

• N.O.

MECHANICAL 0.14 (3.5) DIA. 1.06

 $\frac{2.874}{(73)}$

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com E-mail: sales@crmagnetics.com 68

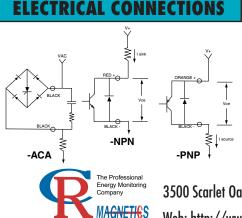
Current Switch Normally Open

CR9300 Series

CR9321 Non-Mounting Base

CR9380 Non-Mounting Base

CR9380 with Mounting Base


DC SWITCHING (-NPN or -PNP)

Vce (full off): 30 VDC max. Isink (full on): 120 mADC max.@ rated full-on Vce (reverse polarity voltage): 1.2 VDC @ 100 mADC

Vce (full on): 1.5 VDC @ 120 mADC lsink Off state leakage current: 5ua @ 30 VDC (typical)

AC SWITCHING (-ACA)

Off state voltage: 240 VAC RMS max. Minimum holding current: 10 mA On state current: 0.8 AAC RMS max. continuous Off state leakage: 50 ua @ 240 VAC max. Peak Non-Repetitive Surge Current: 8 AAC RMS (1 cycle, 60 Hz.)

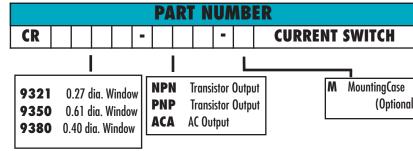
The **CR9300** Series is a low cost, self powered, fixed set-point Current Switch designed for applications that require an on-off indication of current flow. Current levels above the guaranteed full-on level will turn the output to full on. The Current Switch is recommended only for applications where the continuous operating current is above the rated full on level of 350 mA. Operation below this point will not drive the output device full-on and derate the output ratings. The unit is available with a NPN or PNP output transistor for switching DC and a SCR output for switching AC. Connections can be made directly to items such as a PLC or electromechanical relay. Note that connections made directly to an inductive device such as an electromechanical relay will require a customer supplied clamping diode for DC operation or a snubber network for AC operation.

Applications Continuity

Proving Switch

Features

Low Cost Low Fixed Trip Point **Fully Isolated Reverse Output Polarity Protected** Self-Powered


Specifications

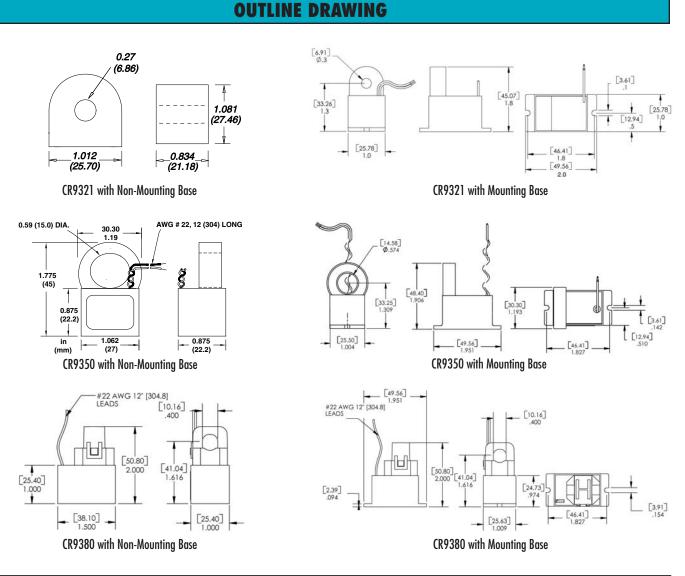
Rated Full-on: 0.350 AAC RMS Turn-on Time: 100 ms. max. @ rated full-on Turn-off Time: 250 ms. max. to 80% of Vce Maximum sense current: Continuous: 100 AAC 1 Second: 500 AAC

Operating Temperature: -30° C to +60° C Storage Temperature: -55° C to +85° C Weight 0.08 LBS. *All specifications for operation at 60 Hz only

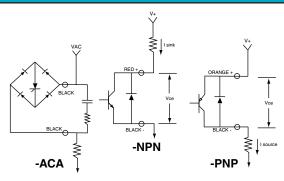
Regulatory Agencies

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 E-mail: sales@crmagnetics.com Web: http://www.crmagnetics.com 69

CR9350 Non-Mounting Base


Frequency*: 50 to 400 Hz

(Optional)


CR9300 Series

D

Relays, Switches, & Sensors

ELECTRICAL CONNECTIONS

3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com70E-mail: sales@crmagnetics.com

Current Switch - Normally Closed

CR9400 Series

CR9450 Non-Mounting Base

CR9421 Non-Mounting Base

CR9480 Non-Mounting Base

CR9480 with Mounting Base

DC SWITCHING (-NPN or -PNP)

Vce (full off): 30 VDC max. Isink (full on): 120 mADC max.@ rated full-on Vce (reverse polarity voltage): 1.2 VDC @ 100 mADC

Vce (full on): 1.5 VDC @ 120 mADC Isink Off state leakage current: 5ua @ 30 VDC (typical)

AC SWITCHING (-ACA)

Off state voltage: 240 VAC RMS max. Minimum holding current: 10 mA On state current: 0.8 AAC RMS max. continuous Off state leakage: 50 ua @ 240 VAC max. Peak Non-Repetitive Surge Current: 8 AAC RMS (1 cycle, 60 Hz.)

The **CR9400** Series is a low cost, self powered, fixed set-point Current Switch designed for applications that require an on-off indication of current flow.

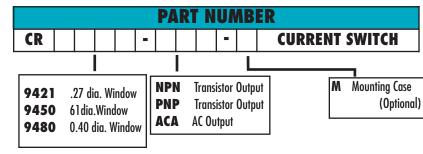
The normal state of the switch is On when the current level is zero. Current levels above the guaranteed full-off level will turn the output to Off. The Current Switch is recommended only for applications where the continuous operating level is above the rated full on level of 350 mA. Operation below this point will not drive the output device full-on and derate the output ratings.

The unit available with a SCR output for switching AC. Connections can be made directly to items such as a PLC or electro-mechanical relay. Note that connections made directly to an inductive device such as an electro-mechanical relay will require a customer supplied clamping diode for DC operation or a snubber network for AC operation.

Applications Continuity

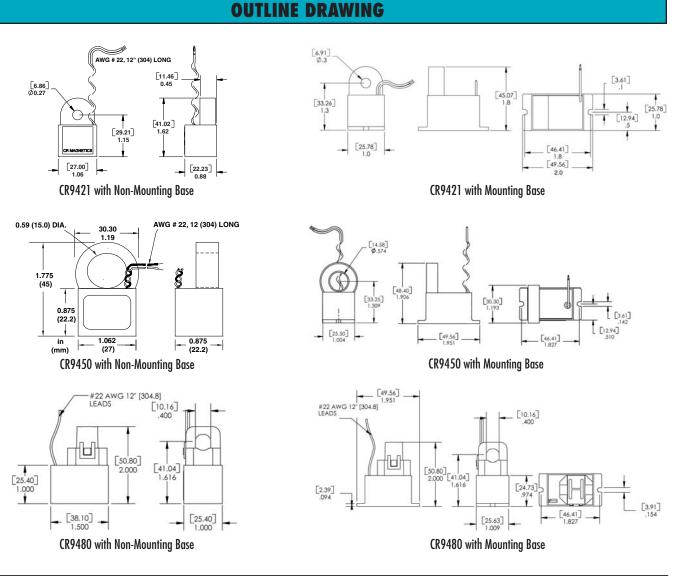
Proving Switch

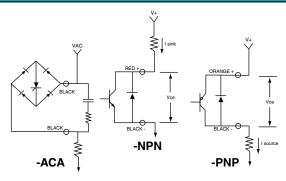
Features


Low Cost Low Fixed Trip Point Fully Isolated Self-Powered

Specifications

Rated Full-off: 0.400 AAC RMS Turn-on Time: 100 ms. max. @ rated full-on Turn-off Time: 250 ms. max. to 80% of Vce Maximum sense current: Continuous: 100 AAC 1 Second: 500 AAC Frequency*: 50 to 400 Hz Operating Temperature: -30° C to +60° C Storage Temperature: -55° C to +85° C Weight 0.08 LBS. *All specifications for operation at 60 Hz only


Regulatory Agencies



3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com71E-mail: sales@crmagnetics.com

CR9400 Series

ELECTRICAL CONNECTIONS

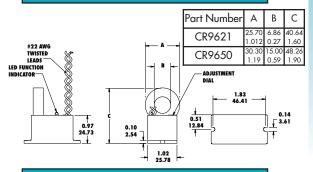
 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119

 Web: http://www.crmagnetics.com
 72
 E-mail: sales@crmagnetics.com

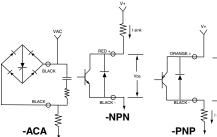
Adjustable Current Switch Normally Open

CR9600 Series

DC SWITCHING (-NPN or -PNP)


Vce (full off): 30 VDC max. Isink (full on): 120 mADC max.@ rated full-on Vce (reverse polarity voltage): 1.2 VDC @ 100 mADC

Vce (full on): 1.5 VDC @ 120 mADC Isink Off state leakage current: 5ua @ 30 VDC (typical)


AC SWITCHING (-ACA)

Off state voltage: 240 VAC RMS max. Minimum holding current: 10 mA On state current: 1.0 AAC RMS max. continuous Off state leakage: 50 ua @ 240 VAC max. Peak Non-Repetitive Surge Current: 8 AAC RMS (1 cycle, 60 Hz.)

OUTLINE DRAWING

ELECTRICAL CONNECTIONS

CR

9621 9650

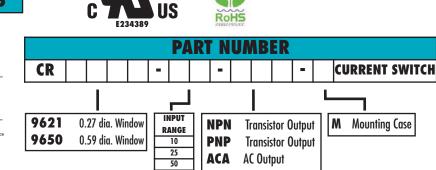
The Professional Enerav Monitorina **MAGNETICS** ISO 9001:2008 Quality

The **CR9600** Series is a low cost, self powered, adjustable set-point Current Switch designed for applications that require an on-off indication of current flow. Current levels above the setpoint will turn the output to full on. The Current Switch is recommended only for applications where the continuous operating current is above the rated full on level of 1.0 Amps. Operation below this point will not drive the output device full-on and derate the output ratings. The unit is available with a NPN or PNP output transistor for switching DC and a SCR output for switching AC. Connections can be made directly to items such as a PLC or electromechanical relay. Note that connections made directly to an inductive device such as an electromechanical relay will require a customer supplied clamping diode for DC operation or a snubber network for AC operation.

Applications

Continuity **Proving Switch**

Features


Low Cost Adjustable Trip Point #22 AWG 12" Lead Length **Reverse Output Polarity Protected** Self-Powered

Specifications

Rated Full-on: 1.0 AAC RMS Turn-on Time: 100 ms. max. @ rated full-on Turn-off Time: 250 ms. max. to 80% of Vce Maximum sense current: Continuous: 100 AAC 1 Second: 500 AAC Frequency*: 50 to 400 Hz

Operating Temperature: -30° C to +60° C Storage Temperature: -55° C to +85° C Weight 0.08 LBS *All specifications for operation at 60 Hz only

Regulatory Agencies

D

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com

73

Current Sensor

CR9521 Non-Mounting Base

CR9580 Non-Mounting Base

PART

.27" dia. Window

.61" dia. Window

.40" Splitcore

NUMBER

INPUT

RANGE

10

20

50

-

М

Mounting Case

(optional)

CR9580 with Mounting Base

The **CR9500** Series Current Sensors provides a cost effective method for monitoring electrical current. The sensor generates a 0-5 VDC signal proportional to the input AC current. The output signal is average sensing, calibrated to RMS. The sensor is used with process control and industrial instrumentation equipment. Especially suited for OEM applications that require a low cost solution for numerous monitoring locations. The DC output can be connected directly to an analog input connection without additional signal conditioning. Care must be taken to ensure the burden impedance of the instrumentation is

greater than 1.0 megohm. The unit will operate with lower bur-

Applications

OEM Current Sensing Home Automation Monitor Motor Operation

Features

Low Cost Low Fixed Trip Point Fully Isolated, Reverse Polarity Protected Self-Powered Available in Mountable Package Output Overload Protected

den impedance but at reduced accuracy.

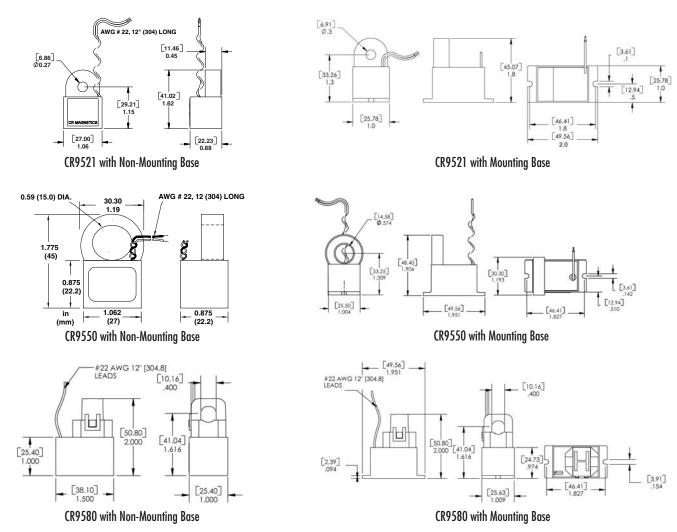
Specifications

Accuracy: ±0.5% Full Scale (FS) Ripple: 1% Max Signal Out: 0-5 VDC Max. Signal Out: 12 VDC Frequency * : 50 to 400 Hz Insulation Class: 600 V Operating Temperature: -30 C to + 60 C Storage Temperature: -55 C to + 85 C Shipping Weight: 2 oz. (.06 Kg.) Dielectric Withstand: 2,500 Vrms Response Time: 250 ms. max. 10-90% FS Calibration: Avg. Sensing, RMS Calibrated Output Load: 1.0 Megohm or greater for rated accuracy Weight 0.11 LBS. * All specifications for operation at 60 Hz

Regulatory Agencies

3500 Scarlet Oak Blvd.St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119Web: http://www.crmagnetics.com74E-mail: sales@crmagnetics.com

CR


9521

9550

9580

CR9500 Series

OUTLINE DRAWING

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com E-mail: sales@crmagnetics.com 75

 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119

 Web: http://www.crmagnetics.com
 76
 E-mail: sales@crmagnetics.com

Indicators & Displays

CR Magnetics Indicators are designed to give the designer an easy and low cost method of sensing electrical properties. The simple indicating LED represents the presence of AC current in a conductor placed through the sensing ring. Useful for quick and easy analysis of heater elements, lighting filaments, and motor operation, these products save money by increasing efficiency, decreasing down time, and improving maintenance operations.

The **CR45 Current Indicator** is our most popular indicator product. Self powered and in a complete self contained package, the CR45 is a wire mountable unit shipped complete with a wire mounting anchor. Use the MB45 bracket for panel mounting. The CR45 is available in red, green, blue, white, yellow and amber LEDs.

The **PH31 Series** are remote panel mounted indicators designed to provide remote AC current indication and status. The bezel mounting design allows for use in NEMA and fluid spray cabinets. Use with the Model 18 or Model 19 remote current sensors.

The **PH25 Series** remote panel mounted indicators are for use in less stringent environment panels. Identical electrically to the PH31, the snap-in panel mount action makes assembly quick and easy. Available in all colors.

The CR2530 Series Remote Electrical Current

Indicators are an economical method for providing a visual indication of current flow. The value of the turn-on point is determined by the customer and specified in the part number.

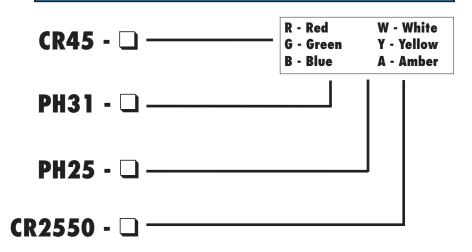
The **CR2550 Low Cost Current Indicator** is designed for use in high volume applications. Entirely self contained construction provides a complete low cost solution that is easily mounted and provides snap in panel construction.

The **Current Mark Displays** are designed as a low cost method for providing a visual indication and measurement of electrical current flow. The current-carrying wire is routed through the window opening in the current sensing transformer, providing sensing and power for the instrument.

CRM1000 Series high efficiency, 7 LED indicator that illuminates as the current approachs the full scale range.

CRM2000 Series is a modern looking light bar with nice visual appeal.

CRM3000 Series is an auto-ranging display with an input range up to 50 AAC.



3500 Scarlet Oak Blvd.St. LouisMOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com77E-mail: sales@crmagnetics.com

Selection Guide

	Pas	22	**** ***** ***************************					
	S.	8 ANSI	4	æ	WO 10	W. J.		
AC Current Sensing	~	~	~	~	~	~		
Self Contained	 ✓ 			~				
Panel Mount	 ✓ 	~	~	~	~			
Wire Mount	 ✓ 			~		~		
NEMA Rated		~						
Low Cost			~	~		~		
Remote Sensing		~	~	~	~	~		
MB-18 Bracket					~			
MB45 Bracket	 ✓ 							

INDICATOR PART ORDERING

MODEL 18-600 Sensor

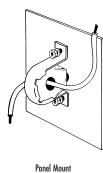
MB-18 Mounting Bracket

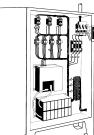
The Professional Energy Monitoring Company MACHETICS ISO 9001:2008 Quality Management System

MODEL 19 Sensor

MB45 Mounting Bracket

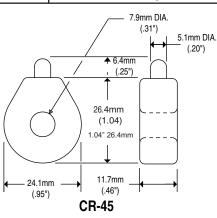
CR45 Series





Three-Wire Passes

One-Wire Pass


Two-Wire Passes

Load Center

PART NUMBERS								
Part Number	LED Color	Turn On Point (1 pass)						
CR45-R	Red	2.0 AAC						
CR45-G	Green	2.5 AAC						
CR45-B	Blue	2.0 AAC						
CR45-W	White	2.0 AAC						
CR45-Y	Yellow	2.0 AAC						
CR45-A	Amber	2.0 AAC						
MB45	Panel Mounting Bracket							

The CR45 Series, Wire Mounted Electrical Current Indicators provide an effective method of monitoring electrical current. The indicator is attached directly to a current-carrying wire. When the current exceeds the turn-on point, the LED will illuminate to indicate the presence of current.

Applications

Monitor Status of Heater Elements **Observe Remote Loads** Indicate Phase Loss Monitor Motor Operation

Features

Self Powered Red, Green, Blue, White, Yellow and Amber Indicators Easy to Install Supplied with a plastic wire tie Bright Yellow Case for Easy Identification Panel Mounting Bracket available

Specifications

100 AAC Max, 600 VAC Max rating Thermoplastic Case Material 14.2 g / 0.5 oz weight 50 - 1Khz Bandwidth -10°C to +85°C Operating Temperature Mounting Bracket Non-Magnetic Aluminum Material Weight 0.03 LBS.

Regulatory Agencies

(1.16")

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

Web: http://www.crmagnetics.com

79

RUBBER

WASHER FURNISHED

Remote Current Indicator

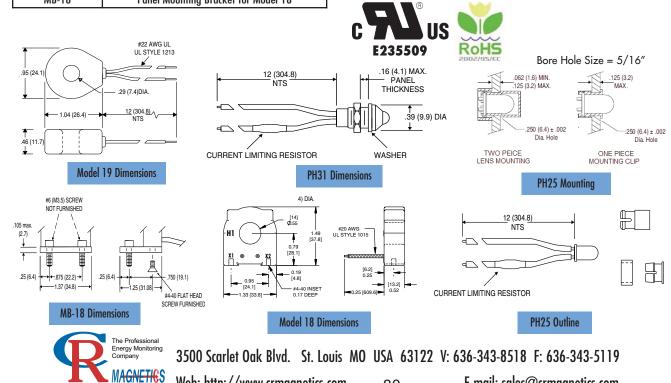
	PAR1	NUMBERS	
Part Number	LED Color	Model 18 Turn On	Model 19 Turn On
PH-25-A	Amber	3.0 AAC	2.5 AAC
PH-25-B	Blue	2.5 AAC	2.0 AAC
PH-25-G	Green	3.0 AAC	2.5 AAC
PH-25-R	Red	2.5 AAC	2.0 AAC
PH-25-W	White	2.5 AAC	2.0 AAC
PH-25-Y	Yellow	2.5 AAC	2.0 AAC
PH-31-A	Amber	3.0 AAC	2.5 AAC
PH-31-B	Blue	2.5 AAC	2.0 AAC
PH-31-G	Green	3.0 AAC	2.5 AAC
PH-31-R	Red	2.5 AAC	2.0 AAC
PH-31-W	White	2.5 AAC	2.0 AAC
PH-31-Y	Yellow	2.5 AAC	2.0 AAC
Model 19	Wire Mo	unt Current Transform	ner, 7.4mm window
Model 18		ount Current Transforr	
MB-18	Pa	nel Mounting Bracket	for Model 18

ISO 9001:2008 Quality Manag

The Remote Electrical Current Indicators provide an effective method for remote monitoring of electrical current. The remote current sensing transformer is installed around the current-carrying wire and is connected directly to the LED panel indicator. When the current exceeds the turn-on point of the sensing transformer, the LED illuminates to indicate the presence of current. Two sizes of remote current sensing transformers are available for use with either one of two types of LED indicators. The panel indicators are available with either red, green, blue, white, yellow or amber LEDs.

Applications

Monitor Status of Heater Elements Observe Remote Loads Indicate Phase Loss Monitor Motor Operation


Features

Self Powered Red, Green, Blue, White, Yellow and Amber Indicators Panel Mounting Bracket available

Specifications

Model 18: 100 AAC Max, 600 VAC Max rating Model 19: 25 AAC Max, 600 VAC Max Rating 50 - 1 Khz Bandwidth -10°C to +85°C Operating Temperature Mounting Bracket Non-Magnetic Aluminum Material Weight 0.03 LBS.

Regulatory Agencies

Web: http://www.crmagnetics.com

80

Remote Current Indicator with preset turn-on point

CR2530 Series

Typical Installation

PART NUMBERS										
Part Number	Turn-On Point			Lead Length						
CR2530										
		I R - Red G - Green B - Blue W - White Y - Yellow A - Amber				gth is 14″ vailable				

Standard Turn-on Points: 2.0, 5.0, 10, 20, 25, & 30 AAC Custom ranges are available The **CR2530 Series** Remote Electrical Current Indicators are an economical method for providing a visual indication of current flow. The indicators are factory calibrated to provide a preset turn-on point. The value of the turn-on point is determined by the customer and specified in the part number. Attached to the transformer is a high efficiency, bi-polar LED that illimuminates when the current is above the turn-on point. The CR2530 standard lead length is 14 inches but can be customized to the customer's needs. Available LED bulb colors are Red, Green, Blue, White, Yellow and Amber.

Applications

Monitor Status of Heater Elements Observe Remote Loads Indicate Phase Loss Monitor Motor Operation

Features

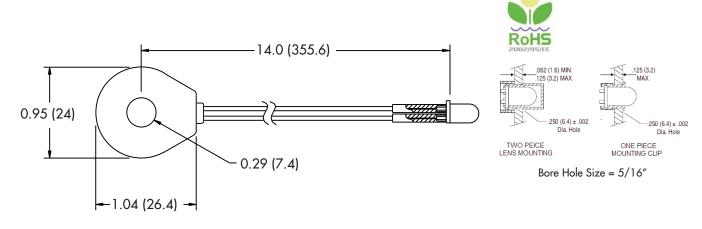
Self Powered Preset Turn-on Point Fully Isolated Easy to install Panel Mounting Bracket available for Current Transformer

Specifications

 Max Current:
 100 AAC Max, 600 VAC Max Rating

 Frequency
 50 - 400 Hz Bandwidth

 Operating Temperature
 -30°C to +60°C

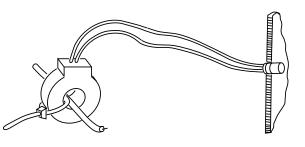

 Storage Temperature
 -55°C to +85°C

 Optional Mounting Bracket Non-Magnetic Aluminum

 Material

 Weight 0.07 LBS.

Regulatory Agencies


3500 Scarlet Oak Blvd.St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119Web: http://www.crmagnetics.com81E-mail: sales@crmagnetics.com

Low Cost Remote Current Indicator

CR2550 Series

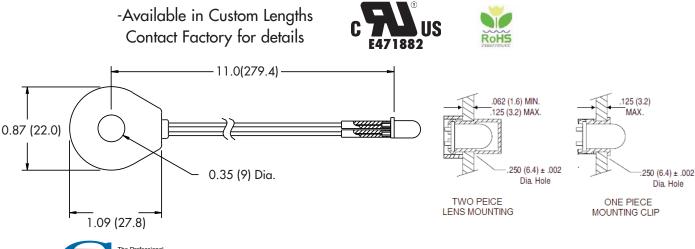
PART NUMBERS										
Part Number	LED Color	Turn On Point (1 pass)								
CR2550-R	Red	0.75 AAC								
CR2550-G	Green	1.5 AAC								
CR2550-B	Blue	1.0 AAC								
CR2550-W	White	0.75 AAC								
CR2550-Y	Yellow	1.0 AAC								
CR2550-A	Amber	1.5 AAC								

Typical Installation

The **CR2550** Series Remote Current Indicators are designed as a low cost method for providing a visual indication of electrical current flow. The current-carrying wire is routed through the window opening in the current sensing transformer. Attached to the transformer is a high efficiency, bipolar LED that illuminates when the current is above the turnon point. The indicator is available as standard with an 11 inch long lead and a red, green, blue, white, amber or yellow LED indicator.

Applications

Monitor Status of Heater Elements **Observe Remote Loads** Indicate Phase Loss Monitor Motor Operation


Features

Self Powered Red, Green, Blue, White, Yellow and Amber Indicators Low fixed trip point Low Cost for high Volume OEM Applications

Specifications

20 AAC Max, 600 VAC Max rating Thermoplastic Case Material 14.2 g / 0.5 oz weight 50 - 400 Hz Bandwidth -30°C to +60°C Operating Temperature -55°C to +85°C Storage Temperature T-1^{3/4}, Bipolar, Red/Red or Green/Green Diffused, Indicator is supplied with LED attached to current sensing transformer. Supplied with both one-piece press in lens and two-piece mounting clip. Weight 0.03 LBS.

Regulatory Agencies

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com E-mail: sales@crmagnetics.com 82

Current Mark Displays

CRM1000 Series

CRM2000 Series

CRM3000 Series

The **Current Mark Displays** are designed as a low cost method for providing a visual indication and measurement of electrical current flow. The current-carrying wire is routed through the window opening in the current sensing transformer, providing sensing and power for the instrument. **CRM1000** Series high efficiency, 7 LED indicator that illuminates as the current approachs the full scale range. **CRM2000** Series is a modern looking light bar with nice visual appeal. **CRM3000** Series is an auto-ranging display with an input range up to 50 AAC.

Applications

Monitor Status of Heater Elements Observe Remote Loads Indicate Phase Loss Monitor Motor Operation

Features

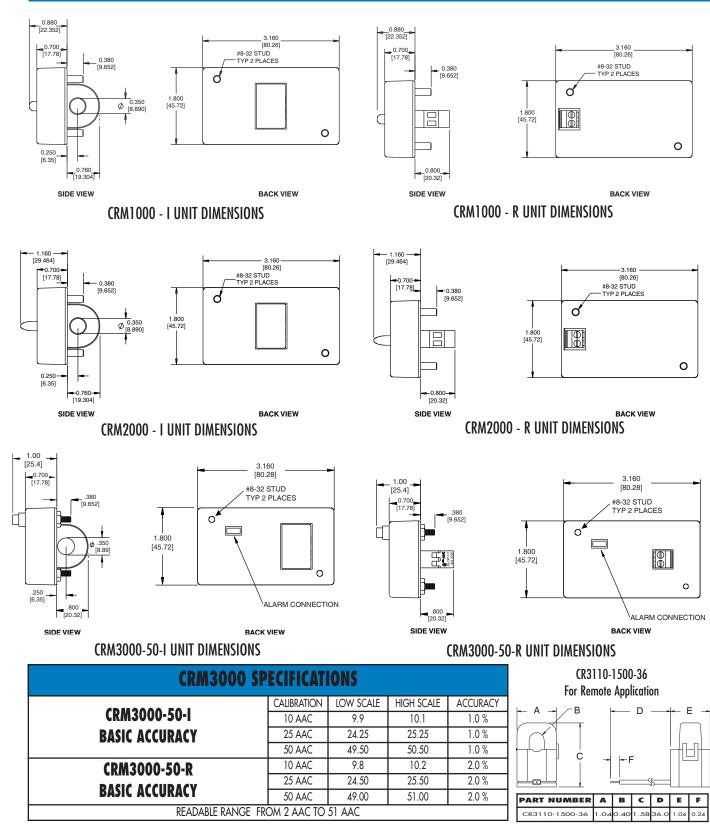
Self Powered Quick Visual Marking of AC Current Compact Low Cost for high Volume OEM Applications

Specifications

300AAC In-Rush 100AAC Continuous 50 AAC Rated 600 VAC Max rating Thermoplastic Case Material 50/60 Hz Bandwidth* -30°C to +60°C Operating Temperature -55°C to +85°C Storage Temperature

* Contact Factory for additional input frequency ranges

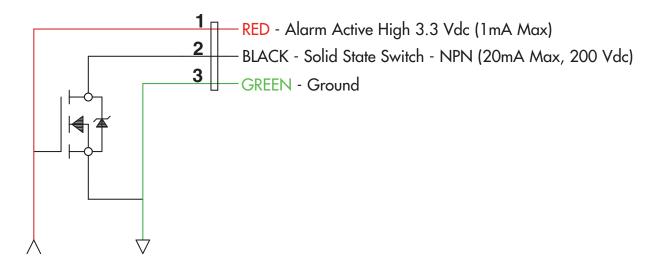
Regulatory Agencies


	PART NUMBERS										
	CRM1000	-			7-LED Indicator						
	CRM2000	-	Light Bar								
	CRM3000	-	50		Auto Ranging to 50 AAC						
Add suffix 25 - 50 -	for input 2-25 A 2-50 A	AC			Current Transformer: -I Internal -R Remote Split CR3110-1500-36 (Included in Price)	CR3110-1500-36					

3500 Scarlet Oak Blvd.St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119Web: http://www.crmagnetics.com83E-mail: sales@crmagnetics.com

Current Mark Displays

OUTLINE DRAWING



3500 Scarlet Oak Blvd.St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119Web: http://www.crmagnetics.com84E-mail: sales@crmagnetics.com

E

CRM3000 CABLE ASSEMBLY CONNECTION DIAGRAM

ALARM PROGRAMMING AND OPERATING INSTRUCTIONS

Models:

CRM3000-50-I CRM3000-50-R

- 1. Provide power to the unit.
- 2. Determine desired current level to activate alarm
- 3. Press and hold alarm button for two seconds and release
- 4. LCD display blinks either the last alarm setting or "Aoff". (Unit is factory set in "Aoff" mode)
- 5. Depress and release alarm button until desired set-point is reached
- 6. Press and hold alarm button for two seconds
- 7. Set-point is stored in memory and unit returns to normal operation
- 8. To deactivate alarm, press and hold alarm button for two seconds in "Aoff" mode

CRM3000 ALARM CABLE & PIN CONNECTOR (Optional) CRM3000-CBL-36 CRM3000 Alarm Cable Assembly 36" Lead

 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119

 Web: http://www.crmagnetics.com
 86
 E-mail: sales@crmagnetics.com

Current Transformers

CR Magnetics supplies an extensive line of current transformers for any need. With offerings measuring from 10,000 Amps to a few milliamps, we guarantee we will find a product that works for your application. Our facilities in the USA and Asia insure a low lead time on small and large quantity orders. We also maintain a healthy stock of the most popular sizes and current ratios.

0

The CR8300 Series Current Transformers are printed circuit board mounted products designed to provide AC current measurement capability to any application. Typically high ratio devices, these products are designed to be applied to modern signal processing techniques and ICs to provide extremely accurate monitoring and measurement. Specific core and winding construction are available including nickel and nanocrystalline cores for power meter and ground fault applications, silicon steel core for standard applications, ferrite core for high frequency sensing, and a DC immune type core for dirty power measurement.

The CR8400 Current Transformers are wire lead, wire mount versions of the same transformers offered in the CR8300 series. Additionally, some special ratios are available for ground fault and indicator applications. Available in stock standard ratios, with fast turn around times for special designs.

ANSI and Commercial Class Current Transformers are standard 5 Amp secondary devices available in the most common footprints and mounting styles. Doughnut or Panel mounting, with leads or terminals are available. ANSI Class grades have been certified to meet most revenue grade meter requirements, and Commercial grade devices provide consistent, accurate monitoring for most industrial applications. Our short run capability is also available for unique non-standard ratio applications. Competitively priced, with UL, CSA, CE, and RoHS approvals.

Split Core and Horizontal Current Transformers are special packages provided for unique requirements. Split core devices allow the CT to be installed over existing power cables. Horizontal PC mount current transformers allow for unique wire placement within your products. Our most popular units are in stock, and we also offer quick turn around for custom designs.

3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com87E-mail: sales@crmagnetics.com

Selection Guide

			ANSI & COMMERCIAL GRADE 5 AMP					L	WIRE MOUNTED WIRE LEADS					MEDIUM VOLTAGE WOUND PRIMARY									
										00							B 1						
ers S		.8	6°''	60. d	100 ed	10,00	10 00	Che.	900°	Moon	toon of	On de de	Moo de	oo ee	to de	00. 12	6/3	¢00	100.11	612 40	So Chin	C. Mr.	•
d	ANSI Class		V	V	V													v			~	V	
	Commercial Class	v		V													~						
	Power Meter		~	~	~				~			~						~		~	V	~	
ł	Current Meter	~	~	V	~	V	~		~	~	V	~		V	V	V	V	~	V	V	V	V	P
S	Motor Current	~	~	~	~	~	~		~	~	~	~		~	~	~	~	~	~	~	~	~	APPLICATION
	Ground Fault							~					~										E
Ð	Indicator								~		V				~				~	~			ž
	High Frequency									~				~									
	DC Immune						~				V												
	Medium Voltage																				V	~	
	5 Amp Secondary	~	~	~	~	~											~	~			V	~	
	High Ratio				~	~	~	~	~	~	~	~	~	~	~	~	~			~	~		┓
	Split Core														~	~	~	~					AC
	PC Mount					~	~	~	~										~	~			PACKAGE
	Wire Mount	v	V	V	~						~	~	~	~	~	~	~	V	~	~	~	~	m
	Horizontal Mount																			~			
	Panel Mount	v		V	v											~	~	V	V		~	~	
	UL/CSA Approved	/	v	/	v	~	~	~	v	~	~	v	~	~	~	~	~	v	V	~	~	~	AG
•	CE Approved	/	~	~		~	~	~	~	~	~	~	~	~	~				V	~			AGENCY
	RoHS Compliant	V	V	V	V	v	v	V	v	v	V	v	V	V	v	v	v	v	V	v	v	~	2

CR Magnetics supplies many products not shown here. High current CTs, special medium voltage CTs, and custom designs. Please contact the factory for details!

 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119

 Web: http://www.crmagnetics.com
 88
 E-mail: sales@crmagnetics.com

Changing Current Transformer Ratios

The actual current ratio may be changed from the nameplate ratio by wrapping the primary and/or secondary leads through the window opening.

ACTUAL TURNS —	NAMEPLATE RATIO 🛨	NUMBER OF SECONDARY TURNS THROUGH WINDOW OPENING						
RATIO NUMBER OF PRIMARY TURNS THROUGH WINDOW OPENING								
	- Wire from X1 terminal							

the H1 side and out the H2 side
+ Wire from X1 terminal is routed through the H2 and out the H1 side

Example

This illustration shows how a current transformer with a nameplate turns ratio of 125:5 can be rescaled to operate as a non-standard 55:5 ratio transformer.

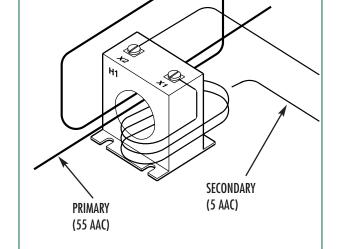
WHERE:

Nameplate ratio = 125 (125/5)

.

first

through the H1 side and out the H2 side (Use + if the wire was routed first through the X2 side)

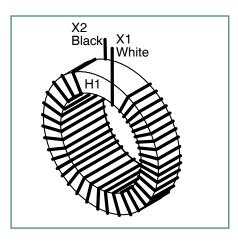

Use -3 because the secondary wire is routed from X1 terminal

Number of primary turns through window = 2

Number of secondary turns through window = -3

$$\frac{\frac{125}{5} - 3}{\frac{2}{2}} = 11$$

TURNS RATIO = 11:1 CURRENT RATIO = 55:5



3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com89E-mail: sales@crmagnetics.com

Winding Polarity

This illustration shows the internal construction of a current transformer. The outside face of the transformer is identified as H1. The opposite face is identified as H2. The secondary leads are identified as X1 and X2.

Current flowing out of terminal X1 will have the same polarity as current flowing into terminal H1.

Window Openings

The current transformer window opening should be sized according to the outside diameter of the wire and the number of wires, with ample clearance added to facilitate installation. Use the below formula for multiple wires of the same diameters through the current transformer window opening.

Minimum Window Diameter = K x Diameter

Number of Wires Through Opening	K
2	2
3	2.165
4	2.414
5	2.704
6	3.0
7	3.0
8	3.73
9	3.83

3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com90E-mail: sales@crmagnetics.com

Model 17, 18, 19 Series

Model 17 & 18 Shown with optional mounting bracket MB-18

Model 19

ORDER INFORMATION

Part Number	Description
Model 17-2000	Current Transformer with wire leads, .55 dia. opening, 2000 turns
Model 17-1000	Current Transformer with wire leads, .55 dia. opening, 1000 turns
Model 18-600	Current Transformer with wire leads, .55 dia. opening, 600 turns
MB-18	Surface Mounting Bracket for Model 17 or Model 18
Model 19	Current Transformer with .29 dia. opening, 230 turns

CR Magnetics offers a versatile line of rugged wire lead current transformers. Installed around a current-carrying wire, the sensor provides a current output relative to the AC input current (within specification limits). With the output connected across a resistive load (burden), the voltage developed is proportional to the input current.

Applications

Remote monitoring of electrical loads Input to electrical control system Detect open heater elements Indicate phase loss Monitor motor operation

Features

Low cost

Non-contact, isolated current measurement Surface mounting bracket available for Models 17 and 18 Two case sizes, three different standard ratios

Specifications

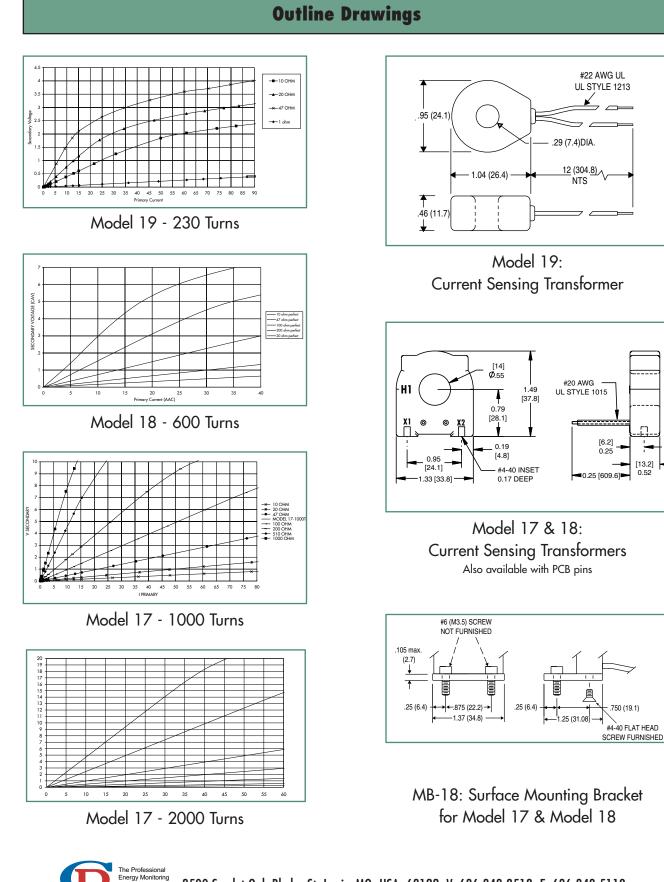
Frequency: 50-60 Hz	
Case Material: Black thermoplastic	
Maximum Continuous Primary Current	4 X Ir
Insulation Voltage	3500 Vac/1min

Regulatory Agencies

F

BASIC SPECIFICATIONS

Part Number	lmax	Vmax	Te (typ.)	DCR Ω	Frequency
Model 17-2000	200	10	2010	120	50 - 2KHz
Model 17-1000	200	7.5	1010	31	50 - 2KHz
Model 18-600	100	00 5 605 23		23	50 - 2KHz
Model 19	25	2	235	3	50 - 2KHz



3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

Web: http://www.crmagnetics.com

91

Wire Lead Current Transformers

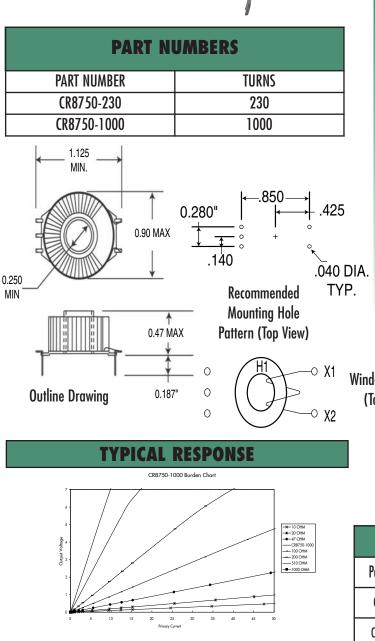
Current Transformers

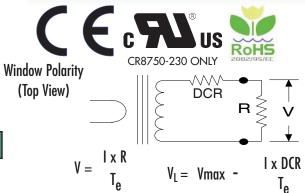
3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 92

E-mail: sales@crmagnetics.com

Web: http://www.crmagnetics.com

MAGNETICS


ISO 9001:2008 Quality Manag



The **CR8750** Series, PCB Current Transformer provides a low cost method for monitoring electrical current. The transformer is intended to be mounted on a Printed Circuit Board with the current-carrying wire routed through the center window opening. A five-pin, non-symmetrical mounting pattern ensures correct orientation to the PCB. Two different winding ratios are available to accommodate various applications. The graph illustrates how different values of burden resistors attached to the output terminal will provide a number of different output voltage ranges.

Applications

Ammeters	
Energy Measurement	
Watt/VAR/Watthour measurement	
Features	
Low Cost	
Core secured via Epoxy Resin	
Hand Tuned Accuracy	
Specifications	
Frequency: 50-60 Hz	
Case Material: Black thermoplastic	
Maximum Continuous Primary Current	4 X Ir
Insulation Voltage	3500 Vac/1min
Regulatory Agencies	
	ALC: N

For best linearity, choose R such that V < 0.8 V_I

BASIC SPECIFICATIONS										
Part Number	lmax	Vmax	Te (typ.)	DCR Ω	Frequency					
CR8750-230	30	2	235	3	50 - 2KHz					
CR8750-1000	60	6	1010	32	50 - 2KHz					

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

Web: http://www.crmagnetics.com

93

E-mail: sales@crmagnetics.com

CR Magnetics CR8300 Series of PCB Mounted Current Transformers are available in a wide range of sizes and materials to meet any AC current sensing needs. Our General Purpose designs are made from the highest quality silicon steel cores available, and meet most of the common AC current measurement needs. Our Revenue Grade (-N) are made from a nickel alloy core which provides the most linear response over temperature and current level. A line of **Ground Fault** (-G) are for measuring low AC currents including electrical shields. Nanocrystalline (-A) is the most versatile providing accuracy, high saturation point and linear responses in high frequency applications. The **High**

Frequency (-F) products are designed for high frequency applications such as high frequency power supplies and motor drives. CR Magnetics offers DC Immune (-D) models that are designed to provide sensing of AC currents where DC offsets also exist.

Te (typ.)

Vmax RMS

CURREN

DCR W

GENERAL PURPOSE VERTICAL PCB Current Transformers Part Numbe

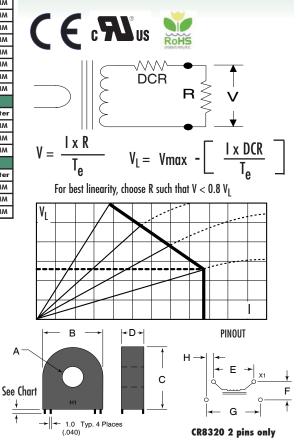
CR8320-1600	10	1.8	1613	95	20 - 1 KHz	0.8 X 4.0 MM
CR8348-1000	20	7.0	1023	24	20 - 1 KHz	1.0 X 3.0 MM
CR8348-2000	50	13.7	2046	106	20 - 1 KHz	1.0 X 3.0 MM
CR8349-1000	50	11.6	1016	35	20 - 1 KHz	1.0 X 6.0 MM
CR8349-1500	75	15.5	1520	80	20 - 1 KHz	1.0 X 4.0 MM
CR8350-1000	100	16.5	1021	22	20 - 1 KHz	1.0 X 3.0 MM
CR8350-2000	200	31.0	2037	73	20 - 1 KHz	1.0 X 3.0 MM
REV	ENUE GRA	DE VERTIC	AL PCB C	URRENT TF	RANSFORM	IERS
Part Number	l _r	Vmax RMS	Te (typ.)	DCR Ω	Frequency	Pin Diameter
CR8348-2500-N	40	7.5	2510	134	20 - 1 KHz	1.0 X 3.0 MM
CR8349-1000-N	50	5.1	1009	32	20 - 1 KHz	1.0 X 3.0 MM
CR8349-2500-N	75	11.2	2512	190	20 - 1 KHz	1.0 X 3.0 MM
CR8350-2500-N	100	10.5	2511	57	20 - 1 KHz	1.0 X 6.0 MM
NAN	OCRYSTAL	INE VERTI	CAL PCB O	URRENT T	RANSFOR	MERS
Part Number	l _r	Vmax RMS	Te (typ.)	DCR Ω	Frequency	Pin Diameter
CR8320-1600-A	10	3.0	1600	85	50 - 100 KHz	0.8 X 4.0 MM
CR8348-1000-A	20	6.0	1000	24	50 - 100 KHz	1.0 X 3.0 MM
CR8348-2000-A	50	10.0	2000	102	50 - 100 KHz	1.0 X 3.0 MM
CR8348-2500-A	40	13.0	2578	130	50 - 100 KHz	1.0 X 3.0 MM
CR8348-1000-A	50	4.1	1002	35	50 - 100 KHz	1.0 X 3.0 MM
CR8348-1500-A	75	6.0	1503	77	50 - 100 KHz	1.0 X 3.0 MM
CR8349-2000-A	75	8.0	2002	145	50 - 100 KHz	1.0 X 3.0 MM
CR8349-2500-A	75	1.0	2502	181	50 - 100 KHz	1.0 X 3.0 MM
CR8350-1000-A	100	10.0	1006	20	50 - 100 KHz	1.0 X 3.0 MM
CR8350-2000-A	100	25.0	2001	71	50 - 100 KHz	1.0 X 3.0 MM
CR8350-2500-A	100	21.0	2508	134	50 - 100 KHz	1.0 X 3.0 MM
HIGI	H FREQUE	ICY VERTI	CAL PCB C	URRENT T	RANSFORM	AERS
Part Number	l _r	Vmax RMS	Te (typ.)	DCR Ω	Frequency	Pin Diameter
CR8348-2000-F	50	3.7	2022	88	20 - 200KHz	1.0 X 6.0 MM
CR8349-2000-F	75	16.0	2024	109	20 - 200KHz	1.0 X 3.0 MM
CR8350-2000-F		10.0	2027	73	20 - 200KHz	1.0 X 3.0 MM
D	C IMMUNI	VERTICA	PCB CUR	RENT TRA	NSFORME	25
Part Number	l _r	Vmax RMS	Te (typ.)	DCR Ω	Frequency	Pin Diameter
CR8348-2000-D	50	4.0	2015	57	20 - 1 KHz	1.0 X 6.0 MM
CR8349-2000-D	75	7.6	2017	48	20 - 1 KHz	1.0 X 6.0 MM
CR8350-2000-D	100	6.3	2020	25	20 - 1 KHz	1.0 X 6.0 MM
		1 1 1	1			

Ir = Maximum Input Current to be linearly sensed Vmax = Maximum Voltage (Saturation) CT will develop T_ = Effective turns ratio including losses (All Specifications tested at 60 Hz)

PACKAGE AND PIN OUT DIMENSIONS (mm/in)											
Part Number Prefix	A	B	C	D	E	F	G	Н			
	min	max	max	max	\pm 0.3	\pm 0.3	\pm 0.3	typ			
CR8320	5.5 .22	19.4 .76	19.5 .77	8.2 .32	12.7 .50	N/A	N/A	4.0 .16			
CR8348	6.7 .27	23.5 .93	25 .98	11 .43	15.2 .60	9.5 .37	19 .75	1.90 .07			
CR8349	9 .35	26 1.02	28 1.10	17 .67	15.2 .60	15.5 .61	19 .75	1.90 .07			
CR8350	12.8 .50	37.5 1.48	39 1.54	14 .55	25.4 1.00	12.7 .50	33.02 1.30	3.81 .15			

CR8300 SERIES

Applications


Pin Diamete

Frequency

Motor Load Measurement	
Power Meters	
High Frequency Current Sensing	
Features	
High Ratio	
Standard Footprints	
Specifications	

Maximum Continuous Primary Current	4 X Ir
Insulation Voltage	3500 Vac/1min
Storage Temp.	-45°C thru +85 °C
Operating Temp. General Purpose & Nickel	-40°C thru +85 °C
Operating Temp. High Frequency	-40°C thru +65 °C

Regulatory Agencies

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

Web: http://www.crmagnetics.com

High Ratio Wire Lead Transformers

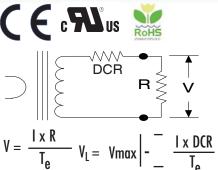
CR Magnetics CR8400 Series of Wire Lead Current Transformers are available in a wide range of sizes and materials to meet any AC current sensing needs. Our General Purpose designs are made from the highest quality silicon steel cores available, and meet most of the common AC current measurement needs. Our **Revenue Grade** (-N) are made from a nickel alloy core which provides the most linear response over temperature and current level. A line of Ground Fault (-G) are for measuring low AC currents including electrical shields.

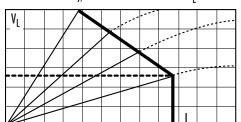
Nanocrystalline (-A) is the most versatile providing accuracy, high saturation point and a linear response in high frequency applications. The **High Frequency** (-F) products are designed for high frequency applications such as high frequency power supplies and motor drives.

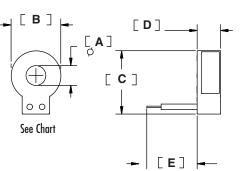
GE	NERAL PU	IRPOSE CU	IRRENT TR	ANSFORM	ERS
Part Number	10	Vmax RMS	Te (typ.)	DCR Ω	Frequency
CR8401-1000	10	2.2	1009	49	20 - 1 KHz
CR8410-1000	20	3.1	1012	41	20 - 1 KHz
CR8420-1000	50	5.2	1018	22	20 - 1 KHz
CR8420-2000	75	9.0	1983	90	20 - 1 KHz
CR8448-1000	30	6.3	990	26	20 - 1 KHz
CR8448-2000	50	13.7	2046	106	20 - 1 KHz
CR8449-1000	50	11.6	1016	35	20 - 1 KHz
CR8449-2000	75	23	2046	150	20 - 1 KHz
CR8450-1000	100	16.5	1021	21	20 - 1 KHz
CR8450-2000	200	32	2037	73	20 - 1 KHz
R			RENT TRA	NSFORME	RS
Part Number	۱ _۳	Vmax RMS	Te (typ.)	DCR Ω	Frequency
CR8448-2500-N	40	6.6	2510	134	20 - 1 KHz
CR8449-2500-N		10.0	2490	187	20 - 1 KHz
CR8450-2500-N	75	12.0	2512	143	20 - 1 KHz
CR8459-2000-N		11.5	2011	74	20 - 1 KHz
			RENT TRA		
Part Number	1 ₈	Vmax RMS	Te (typ.)	DCR Ω	Frequency
CR8401-1000-G		0.6	1005	49	20 - 1 KHz
CR8410-1000-G	7	0.8	1007	38	20 - 1 KHz
CR8420-1000-G		1.4	1011	44	20 - 1 KHz
			RRENT TR		
Part Number	le .	Vmax RMS	Te (typ.)	DCR Ω	Frequency
CR8401-1000-A	4	1.2	1034	43	50 - 100 KHz
CR8410-1000-A	7	1.5	1015	39	50 - 100 KHz
CR8420-1000-A	20 75	1.8	1023	43	50 - 100 KHz
CR8420-2000-A					
		4.0	2010	89	50 - 100 KHz
CR8448-1000-A	30	5.0	1000	25	50 - 100 KHz
CR8448-2000-A	30 50	5.0 10.0	1000 2000	25 103	50 - 100 KHz 50 - 100 KHz
CR8448-2000-A CR8448-2500-A	30 50 40	5.0 10.0 11.0	1000 2000 2524	25 103 131	50 - 100 KHz 50 - 100 KHz 50 - 100 KHz
CR8448-2000-A CR8448-2500-A CR8449-1000-A	30 50 40 50	5.0 10.0 11.0 7.0	1000 2000 2524 1002	25 103 131 35	50 - 100 KHz 50 - 100 KHz 50 - 100 KHz 50 - 100 KHz 50 - 100 KHz
CR8448-2000-A CR8448-2500-A CR8449-1000-A CR8449-2000-A	30 50 40 50 75	5.0 10.0 11.0 7.0 11.0	1000 2000 2524 1002 2013	25 103 131 35 144	50 - 100 KHz 50 - 100 KHz 50 - 100 KHz 50 - 100 KHz 50 - 100 KHz
CR8448-2000-A CR8448-2500-A CR8449-1000-A CR8449-2000-A CR8449-2500-A	30 50 40 50 75 50	5.0 10.0 11.0 7.0 11.0 20.0	1000 2000 2524 1002 2013 2501	25 103 131 35 144 182	50 - 100 KHz 50 - 100 KHz
CR8448-2000-A CR8448-2500-A CR8449-1000-A CR8449-2000-A CR8449-2500-A CR8449-2500-A	30 50 40 50 75 50 100	5.0 10.0 11.0 7.0 11.0 20.0 13.0	1000 2000 2524 1002 2013 2501 1003	25 103 131 35 144 182 21	50 - 100 KHz 50 - 100 KHz
CR8448-2000-A CR8448-2500-A CR8449-1000-A CR8449-2000-A CR8449-2500-A CR8450-1000-A CR8450-2000-A	30 50 40 50 75 50 100 100	5.0 10.0 11.0 7.0 11.0 20.0 13.0 19.0	1000 2000 2524 1002 2013 2501 1003 2000	25 103 131 35 144 182 21 72	50 - 100 KHz 50 - 100 KHz
CR8448-2000-A CR8448-2500-A CR8449-1000-A CR8449-2000-A CR8449-2500-A CR8450-1000-A CR8450-2000-A CR8450-2500-A	30 50 40 50 75 50 100 100 75	5.0 10.0 11.0 7.0 11.0 20.0 13.0 19.0 22.0	1000 2000 2524 1002 2013 2501 1003 2000 2501	25 103 131 35 144 182 21 72 134	50 - 100 KHz 50 - 100 KHz
CR8448-2000-A CR8448-2500-A CR8449-1000-A CR8449-2000-A CR8449-2500-A CR8450-1000-A CR8450-2500-A CR8450-2500-A CR8459-2000-A	30 50 40 50 75 50 100 100 75 200	5.0 10.0 11.0 7.0 11.0 20.0 13.0 19.0 22.0 23.0	1000 2000 2524 2013 2501 1003 2000 2501 2001	25 103 131 35 144 182 21 72 134 73	50 - 100 KHz 50 - 100 KHz
CR8448-2000-A CR8448-2500-A CR8449-1000-A CR8449-2500-A CR8449-2500-A CR8450-1000-A CR8450-2500-A CR8450-2500-A CR8459-2000-A	30 50 40 50 75 50 100 100 75 200 IGH FREQU	5.0 10.0 11.0 7.0 11.0 20.0 13.0 19.0 22.0 23.0 JENCY CU	1000 2000 2524 1002 2013 2501 1003 2000 2501 2001 RRENT TR	25 103 131 35 144 182 21 72 134 73	50 - 100 KHz 50 - 100 KHz
CR8448-2000-A CR8448-2500-A CR8449-2000-A CR8449-2500-A CR8449-2500-A CR8450-2000-A CR8450-2500-A CR8450-2500-A CR8459-2000-A M Part Number	30 50 40 75 50 100 100 75 200 IGH FREQ	5.0 10.0 11.0 7.0 11.0 20.0 13.0 19.0 22.0 23.0 JENCY CU Vmax RMS	1000 2000 2524 1002 2013 2501 1003 2000 2501 2001 REENT TR Te (typ.)	25 103 131 35 144 182 21 72 134 73 73 Δ NSFORM	50 - 100 KHz 50 - 100 KHz 50 - 100 KHz 50 - 100 KHz Frequency
CR8448-2000-A CR8449-2000-A CR8449-2000-A CR8449-2000-A CR8450-2000-A CR8450-2000-A CR8450-2000-A CR8459-2000-A Part Number CR8448-2000-F	30 50 40 50 75 50 100 100 75 200 IGH FREQ Ir 50	5.0 10.0 11.0 7.0 11.0 20.0 13.0 19.0 22.0 23.0 22.0 23.0 JENCY CU Vmax RMS 3.9	1000 2000 2524 1002 2013 2501 1003 2000 2501 2001 RRENT TR Te (typ.) 2015	25 103 131 35 144 182 21 72 134 73 ANSFORM DCR Ω 90	50 - 100 KHz 50 - 100 KHz 50 - 100 KHz 50 - 100 KHz 50 - 100 KHz 50 - 100 KHz 50 - 100 KHz 50
CR8448-2000-A CR8449-1000-A CR8449-2000-A CR8449-2000-A CR8450-2000-A CR8450-2000-A CR8450-2000-A CR8459-2000-A Part Number CR8448-2000-F CR8448-2000-F	30 50 40 50 75 50 100 100 75 200 IGH FREQ Igh FREQ 50 75	5.0 10.0 11.0 7.0 11.0 20.0 13.0 19.0 22.0 23.0 JENCY CU Vmax RMS 3.9 7.4	1000 2000 2524 1002 2013 2501 1003 2000 2501 2001 RRENT TR/ Te (typ.) 2015 2017	25 103 131 35 144 182 21 72 134 73 ANSFORMI DCR 62 90 109	50 - 100 KHz 50 - 100 KHz Frequency 20 - 200 KHz 20 - 200 KHz
CR8448-2000-A CR8448-2500-A CR8449-1000-A CR8449-2500-A CR8450-2500-A CR8450-2000-A CR8450-2000-A CR8459-2000-A Part Number CR8448-2000-F CR8448-2000-F CR8449-2000-F	30 50 40 50 75 50 100 100 75 200 IGH FREQ Ir 50	5.0 10.0 11.0 7.0 11.0 20.0 13.0 19.0 22.0 23.0 JENCY CU Vmox RMS 3.9 7.4 8.5	1000 2000 2524 1002 2013 2501 1003 2000 2501 2001 RRENT TR Te (typ.) 2015	25 103 131 35 144 182 21 72 134 73 ANSFORM DCR Ω 90 109 63	50 - 100 KHz 50 - 100 KHz ERS Frequency 20 - 200 KHz 20 - 200 KHz

T_ = Effective turns ratio including losses (All Specifications tested at 60 Hz)

PACKAGE DIMENSIONS AND OUTLINE (mm/in)											
Part Number Prefix	A	B	C	D	E						
	min	max	max	max	Тур						
CR8401	6.99	17.53	22.35	8.26	75.08						
LKO4VI	.275	.690	.880	.325	2.275						
CR8410	9.0	22	27.8	8.20	73						
CK04IV	.35	.87	1.09	.323	2.87						
CR8420	15.0	30.0	36.0	9.2	100						
CK042V	.59	1.18	1.41	.36	3.94						
CR8448	7.11	23.42	29.46	11.05	100						
CK0440	.280	.922	1.16	.435	3.94						
CR8449	9.14	26.0	31.8	17.0	100						
CROTT7	.354	1.02	1.25	.67	3.94						
CR8450	13.08	36.83	43.18	13.97	88.9						
LK043U	.515	1.45	1.70	.55	3.50						
CR8459	19	48	60	17.5	200						
LK0437	.75	1.89	2.36	.67	7.88						


CR8400 SERIES


Applications	
Motor Load Measurement	
Power Meters	
High Frequency Current Sensing	
Ground Fault Sensing	
Features	
High Ratio	
Custom Lead Lengths Available	
Specifications	
Maximum Continuous Primary Current	4 X Ir
Insulation Voltage	3500 Vac/1min
Storage Temp.	-45°C thru +85 °C
Operating Temp. General Purpose & Nickel	-40°C thru +85 °C


°(-40°C thru +65 °C

Operating Temp. High Frequency Regulatory Agencies

For best linearity, choose R such that $V < 0.8 V_{I}$

5

F

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com E-mail: sales@crmagnetics.com 95

Commercial & Metering Class Current Transformers

The CR Magnetics line of Instrumentation Grade Electrical Current Transformers are available in either Commercial or ANSI Metering Class. The Commercial Class transformers are lower cost and well-suited for current monitoring applications. The ANSI Metering Class transformers are highercost units intended for power monitoring applications where high accuracy and minimum phase angle error are required. Twelve different window openings and eight different mounting styles along with numerous secondary ratios are available to meet most applications. This short form catalog shows an overview of our most popular 5 amp secondary transformers. Contact factory for different sizes or unique electrical requirements.

The Professional Energy Monitoring Magne his 150 0001-2008 000

SFT

RT

RBL

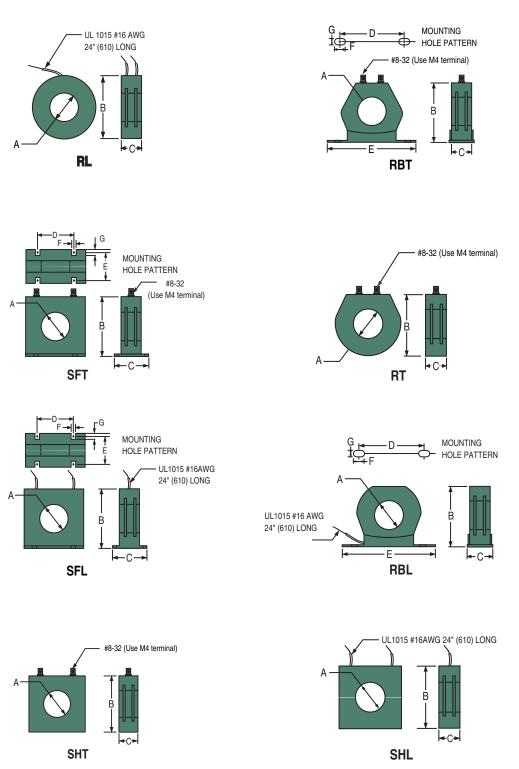
Applications

Ammeters Energy Measurement Watt/VAR/Watthour Measurement **Current Sensing Relays**

Features Low Cost Core Secured via Epoxy Resin Hand Tuned Accuracy **Common Ratios in Stock**

Regulatory Agencies

BASIC SPECIFICATIONS									
Basic Accuracy	10% FS or Better (ANSI)								
Thermal Drift	100 PPM/°C								
Operating Temperature	-20° C to +75° C								
Installation Category	CAT II								
Pollution Degree	2								
Insulation Voltage	3500 Vac/1min								
Frequency Range	50Hz - 400Hz								
Torque Spec on Studs	10 in/lb.								


CUSTOM OPTIONS

Ultra-Low Frequency to 20 Hz

1.0, 0.2, and 0.1 Amp Secondary Ratios

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com 96

Commercial & ANSI Metering Class Current Transformers

 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119

 Web: http://www.crmagnetics.com
 97
 E-mail: sales@crmagnetics.com

DIMENSIONS

Commercial Class Current Transformers

PART NUMBERS					DI	NENS	IONS	5		ACCURACY SPECIFICATIONS		
SERIES	STYLE	RATIO SUFFIX	A	B	c	D	E	F	G	CURRENT RATIO	ACCURACY AT 60HZ	BURDEN VA At 60 Hz
		500								50:5	± 3%	2.0
	RL	600		2.46 (62.5)	1.05 (26.7)					60:5	± 2%	2.0
		750								75.5	± 2%	2.0
	SFT	800		2.68 (68.1)	2.00 (50.8)	1.75 (44.5)	1.75 (44.5)	.27 (6.9)	.31 (7.9)	80:5	± 2%	2.0
		101	01	100:5	± 1%	2.0						
CR2	SFL	121	1.13 (28.7)	2.68 (68.1)	2.00 (50.8)	(1.75 (44.5)	1.75 (44.5)	.27 (6.9)	.31 (7.9)	120:5	± 1%	2.5
		1250	2.71	0.95					125:5	± 1%	2.5	
	SHT	151		(68.8)						150:5	± 1%	4.0
		201		2.71	0.95					200:5	± 1%	4.0
	SHL 251 251 (68.8) (24.1)		250:5	± 1%	6.0							
		301								300:5	± 1%	8.0
R	RL	500		3.56 (90.4)	1.10 (27.9)					50:5	± 2%	1.0
		750				2.75	75 1 77	1 77 01		75.5	± 2%	1.5
	SFT	101				5 1.77 9) (45.0)	.21 (5.3)	.31) (7.9)	100:5	± 2%	2.0	
	CEL	151			2.15 (54.6)	2.75 (69.9)	1.77	.21	.31	150:5	± 1%	5.0
	SFL	201						(5.3)	(7.9)	200:5	± 1%	5.0
	SHT	251		3.83	1.09					250:5	± 1%	10.0
CR5	эпт	301 [].	1.56	(97.3)	(27.7)					300:5	± 1%	12.5
	SHL	401	(39.6)	3.03	1.09					400:5	± 1%	12.5
		501) (27.7)					500:5	± 1%	20.0
	RT	601		3.62 (91.9)	1.13 (28.7)					600:5	± 1%	25.0
		751				0.00	4.50			750:5	± 1%	25.0
	RBT *	801		3.90 1.1 (99.1) (31	1.25 (31.8)	3.88 (98.6)	4.50 (114.3)	14.3) (11.2)	11.2) (6.9)	800:5	± 1%	25.0
		102		3.70						1000:5	± 1%	25.0
	RBL *	122		(94.0)	(31.8)	(98.6)		(11.2)		1200:5	± 1%	30.0
	RL	101		4.70 (919.4)	1.10 (27.4)					100:5	± 2%	2.5
		151		4.85		3.78	1.75	.25	.31	150:5	± 1%	5.0
	SFT	201			(54.1)				.əı (7.9)	200:5	± 1%	5.0
	СГІ	251		4.85	2.13	3.78	1.75	.25	.31	250:5	± 1%	5.0
	SFL	301			(54.1)			(6.4)	(7.9)	300:5	± 1%	12
	SHT	401		4.70	1.10					400:5	± 1%	15
CR7	5111	501	2.50		(27.9)					500:5	± 1%	25
NI /	SHL	601	(63.5)	7.70						600:5	± 1%	30
		751			(27.9)					750:5	± 1%	30
	RT	801			1.10 (27.9)					800:5	± 1%	35
		102		4.94		E 7F	/ -	00	00	1000:5	± 1%	30
	RBT	122			(31.8)	5.75 (146.1)	6.5 (7.1)	.28 (16.5)	.28 (7.1)	1200:5	± 1%	35
	DDI	152		4.70	1.25	5.75	6.5	.28	.28	1500:5	± 1%	40
RBL	RDL	162			(31.8)				(7.1)	1600:5	± 1%	40

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

Web: http://www.crmagnetics.com

98

E-mail: sales@crmagnetics.com

T Current Transformers

Commercial Class Current Transformers

PART NUMBERS					DII	WENS	SION	S		ACCURACY SPECIFICATIONS		
SERIES	STYLE	RATIO SUFFIX	A	B	C	D	E	F	G	CURRENT RATIO	ACCURACY AT 60HZ	BURDEN VA At 60 Hz
	DI	500		3.50	1.09	2.70	1.70	.21	.31	50:5	± 3%	2.0
	RL	750]	(88.9)	(27.7)	(68.6)	(43.2)	(5.3)	(7.9)	75.5	± 1%	0.5
		101				0.70				100:5	± 1%	1.0
	SFT	151]	3.63 (92.2)	2.15 (54.6)	2.70 (68.6)	1.70 (43.2)	.21 (5.3)	.31 (7.9)	150:5	± 1%	2.5
		201								200:5	± 1%	4.0
	SFL	251		3.63	2.15					250:5	± 1%	6.0
CR56		301	2.06	(92.2)	(54.6)					300:5	± 1%	7.5
CNJU	рт	401	(52.3)	3.62	1.10					400:5	± 1%	10.0
	RT	501		(91.9)						500:5	± 1%	12.5
		601			600:5	± 1%	15.0					
	RBT	751		3.90 1.25 3.88 4.50 .27 (99.1) (31.8) (98.6) (114.3) (6.9)	.44 (11.2)	750:5	± 1%	7.0				
		801	1		(01.07	() 0.07	,	(0.7)	()	800:5	± 1%	8.0
	RBL	102]	3.70	1.25	3.88	4.50	.27	.44	1000:5	± 1%	10.0
	NPL	122	1	(94.0)	(31.8)	(98.6)	(114.3)	(6.9)	(11.2)	1200:5	± 1%	12.5
	RL 201		4.50	1.09 (27.7)					200:5	± 1%	5.0	
		251	1	4.68	2.08 (52.8) 2.08 (52.8)	3.70) (44.0) 3.70) (44.0)				250:5	± 1%	5.0
	SFT	301	1					.25 (6.4)	6.4) (7.9) .25 .31	300:5	± 1%	6.0
	JLI	401	1	(128.9)			(44.5)			400:5	± 1%	10.0
		501		4.68			1.75	95		500:5	± 1%	10.0
	SFL	601	1	(118.9)				.25 (6.4)		600:5	± 1%	10.0
CR76		751	3.00 (76.2)							750:5	± 1%	10.0
	RT	801	,	4.62						800:5	± 1%	12.5
		102	1	(117.3)						1000:5	± 1%	10.0
	DDT	122]	4.94	1.25		6.50	.28	.28	1200:5	± 1%	10.0
	RBT	152	1	(125.5)	(31.8)		(165.1)	(7.1)	(7.1)	1500:5	± 1%	12.5
		162		4.70	1.05					1600:5	± 1%	12.5
	RBL	202		4.70 (119.4)	1.25 (31.8)		6.50 (165.1)	.28 (7.1)	.28 (7.1)	2000:5	± 1%	15.0
		500								50:5	± 2%	1.0
		600]							60:5	± 1%	2.0
		750	1							75.5	± 1%	2.0
		800	1							80:5	± 1%	2.0
	DI	101	.64	1.99	1.25					100:5	± 1%	2.5
CR1A	RL	121	(16.3)	(31.8)						120:5	± 1%	3.0
		1250	1							125:5	± 1%	3.0
		151	1							150:5	± 1%	4.0
		201	1							200:5	± 1%	5.0
		251	1							250:5	± 1%	7.5

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

Web: http://www.crmagnetics.com

99

E-mail: sales@crmagnetics.com

ANSI Metering Class Current Transformers

PART NUMBERS					DIM	ENSI	ONS			ANSI METERING CLASS @ 60 HZ					
SERIES	STYLE	RATIO SUFFIX	A	B	C	D	E	F	G	CURRENT RATIO	B0.1	B0.2	B0.5	B0.9	B1.8
		500								50:5	4.8	-	-	-	-
		600								60:5	1.2	4.8	-	-	-
		750 800								75:5 80:5	1.2	2.4 2.4	- 4.8	-	-
		101								100:5	1.2	2.4	4.0	-	-
CR2DA	RL	101	1.0	2.47	1.75					120:5	1.2	2.4	2.4	4.8	-
		1250	(25.4)	(62.7)	(44.5)					125:5	0.6	1.2	2.4	4.8-	-
		151								150:5	0.6	0.6	1.2	2.4	4.8
		201								200:5	0.3	0.3	1.2	1.2	2.4
		251								250:5	0.3	0.3	0.6	1.2	2.4
		301								300:5	0.3	0.3	0.6	0.6	1.2
	ום	500		3.56	1.10 (27.9)				.31 (7.9) .31 (7.9)	50:5	4.8	-	-	-	-
	RL	101		(90.4)			1.77 (45.0)			100:5 150:5	2.4 0.6	4.8	- 2.4	- 4.8	-
	SFT	201	1.56 (39.6)	3.77 (95.8)	2.15 (54.6)					200:5	0.0	0.6	1.2	4.0	- 4.8
		251								250:5	0.6	0.6	1.2	2.4	2.4
	SFL SHT	301		3.77 (95.4) 3.70						300:5	0.3	0.3	0.6	1.2	2.4
CR5A		401			2.15 (54.6)	2.75 (69.9)		.21 (5.3) .21 (5.3)		400:5	0.3	0.3	0.6	1.2	1.2
		501			(5.1.0)	(0///)				500:5	0.3	0.3	0.6	0.6	1.2
		601			1.10	2.75	1.77			600:5	0.3	0.3	0.3	0.6	1.2
		751		(94.0)	(27.9)	(69.9)	(45.0)			750:5	0.3	0.3	0.3	0.6	0.6
	SHL	801		3.70 (94.0)	1.10					800:5	0.3	0.3	0.3	0.6	0.6
		102	4		(27.9)					1000:5	0.3	0.3	0.3	0.3	0.6
		122 101								1200:5 100:5	0.3	0.3	0.3	0.3	0.3
	RL	151		4.08 (103.6)	1.10 (27.9)					150:5	1.2	1.2	2.4	4.8	-
		201		4.21 (106.9)		3.34 (84.8) 3.34 (84.8)	1.75		.31	200:5	0.6	1.2	2.4	2.4	4.8
	SFT	251			2.12			.25		250:5	0.3	0.6	1.2	2.4	4.8
	511	301			(54.6)		(44.5)	(6.4)	(7.9)	300:5	0.3	0.3	1.2	2.4	2.4
		401					1.75 (44.5)		.31 (7.9)	400:5	0.3	0.3	0.6	1.2	1.2
CR6A	SFL	501	2.06 (52.3)	4.21 (106.9)	2.12 (54.6)			.25 (6.4)		500:5	0.3	0.3	0.6	1.2	1.2
		601								600:5	0.3	0.3	0.6	0.6	1.2
	SHT	751		4.22	1.10					750:5	0.3	0.3	0.3	0.6	1.2
	5111	801		(107.2)	(27.9)					800:5	0.3	0.3	0.3	0.6	0.6
		102								1000:5 1200:5	0.3	0.3	0.3	0.3	0.6
	SHL	122		4.22 (107.2)	1.10 (27.9)					1200:5	0.3	0.3	0.3	0.3	0.3
	The Professional	172			Ĺ					1.500.5	0.0	0.0	0.0	0.0	0.0

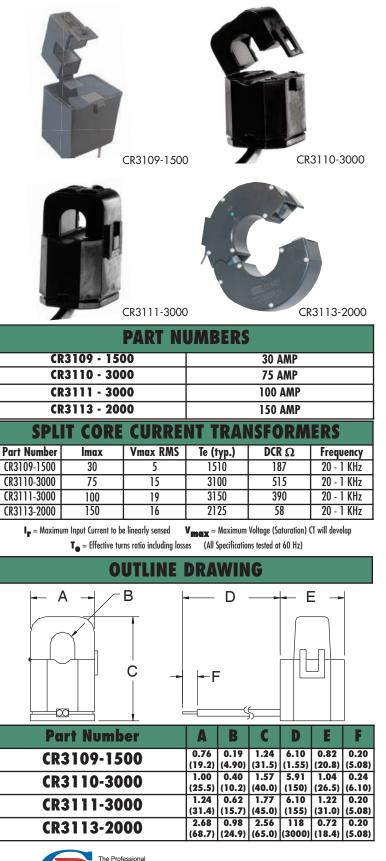
3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

Web: http://www.crmagnetics.com

100

ANSI Metering Class Current Transformers

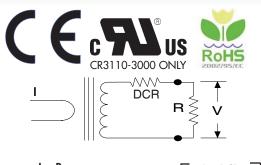
PART NUMBERS					DIMENSIONS						ANSI METERING CLASS @ 60 HZ					
SERIES	STYLE	RATIO SUFFIX	A	B	c	D	E	F	G	CURRENT RATIO	B0.1	B0.2	B0.5	B0.9	B1.8	
	RL	101		4.70 (119.4)	1.10 (27.9)					100:5	1.2	4.8	-	-	-	
		151 201		,	(150:5 200:5	0.6	1.2	4.8 2.4	4.8 4.8	- 4.8	
	СЕТ	251	-	4.85	2.13	3.78	1.75	.25	.31	250:5	0.0	0.6	1.2	2.4	4.8	
	SFT	301		(123.2)		(96.0)	(44.5)	(6.4)	(7.9)	300:5	0.3	0.3	1.2	2.4	2.4	
		401								400:5	0.3	0.3	0.6	1.2	2.4	
CR7A	SFL	501	2.50	4.85 (123.2)	2.13 (54.1)	3.78 (96.0)	1.75 (44.5)	.25 (6.4)	.31 (7.9)	500:5	0.3	0.3	0.6	1.2	1.2	
		601 751	(03.5)	(123.2)	(34.1)	(70.0)	(44.3)	(0.4)	(7.7)	600:5	0.3	0.3	0.6	0.6	1.2 0.6	
	CUIT	801		4.70	1.10					750:5 800:5	0.3	0.3	0.0	0.6	0.6	
	SHT	102		(119.4)						1000:5	0.3	0.3	0.3	0.6	0.6	
		122								1200:5	0.3	0.3	0.3	0.3	0.6	
	SHL	152		4.70	1.10					1500:5		0.3	0.3	0.3	0.3	
	JIIL	162			(27.9)					1600:5	0.3	0.3	0.3	0.3	0.3	
	RL	201		5.73 (145.5)	1.15 (29.2)					200:5	1.2	1.2	2.4	4.8	4.8	
		251 301	-							250:5 300:5	0.6	0.6	1.2	2.4 2.4	4.8 2.4	
		401								400:5	0.0	0.0	0.6	1.2	2.4	
		501								500:5	0.3	0.3	0.6	0.6	1.2	
		601								600:5	0.3	0.3	0.6	0.6	1.2	
		751								750:5	0.3	0.3	0.3	0.6	1.2	
	SHT	801		5.73	1.15 (29.2)					800:5	0.3	0.3	0.3	0.6	0.6	
CR8		102		(145.5)						1000:5	0.3	0.3	0.3	0.3	0.6	
		122								1200:5 1500:5	0.3	0.3	0.3	0.3 0.3	0.3 0.3	
		152 162							16	1600:5	0.3	0.3	0.3	0.3	0.3	
		202								2000:5	0.3	0.3	0.0	0.3	0.3	
		252								2500:5	0.3	0.3	0.3	0.3	0.3	
		302								3000:5	0.3	0.3	0.3	0.3	0.3	
	SHL	322		5.73	1.15					3200:5	0.3	0.3	0.3	0.3	0.3	
		402		(145.5) 6.73	(29.2)					4000:5		0.3	0.3	0.3	0.3	
	RL	201		(170.9)						200:5	0.6	1.2 0.6	2.4	- 2.4	-	
		251 301								250:5 300:5	0.0	0.0	1.2	2.4	-	
		401								400:5	0.3	0.3	0.6	1.2	2.4	
		501								500:5	0.3	0.3	0.6	1.2	1.2	
		601								600:5	0.3	0.3	0.6	0.6	1.2	
		751								750:5	0.3	0.3	0.3	0.3	0.6	
CD170	СПТ	801	4.25		1.28					800:5	0.3	0.3	0.3	0.3	0.6	
CR170	SHT	102 122	(108)	(170.9)	(32.5)					1000:5 1200:5	0.3	0.3	0.3	0.3	0.6 0.6	
		122	-							1500:5	0.3	0.3	0.3	0.3	0.0	
		162								1600:5	0.3	0.3	0.3	0.3	0.6	
		202	1							2000:5	0.3	0.3	0.3	0.3	0.3	
		252								2500:5	0.3	0.3	0.3	0.3	0.3	
		302								3000:5	0.3	0.3	0.3	0.3	0.3	
	SHL	322		6.73	1.28					3200:5	0.3	0.3	0.3	0.3	0.3	
		402		(170.9)	(32.5)					4000:5	0.3	0.3	0.3	0.3	0.3	

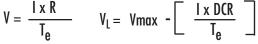

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

Web: http://www.crmagnetics.com

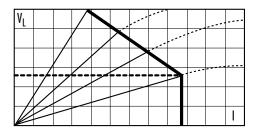
101

E-mail: sales@crmagnetics.com


CR3100 Series



The **CR3100** Series Split Core Current Transformer is designed to provide a low cost method to monitoring electrical current. A unique hinge and locking snap allows attachment without interrupting the current-carrying wire. High secondary turn will develop signals up to 10.0 VAC across a burden resistor.


Applications Portable Instruments Sub-Metering Monitor Motor Loads	
Features	
Small Size	
Low Cost	
High Secondary Turns	
Secure Locking Hinge	
Specifications	
Maximum Continuous Primary Current	4 X Ir
Insulation Voltage	3500 Vac/1min
Storage Temp.	-45°C thru +85°C
Operating Temp.	-40°C thru +65 °C

Regulatory Agencies

For best linearity, choose R such that V < 0.8 V_I

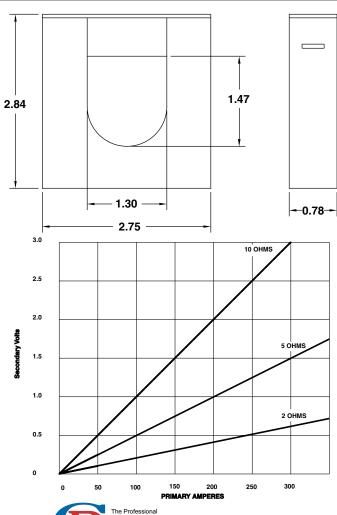
3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

Web: http://www.crmagnetics.com

nergy Monitoring

MAGNETICS

ISO 9001:2008 Quality Manag


102

E-mail: sales@crmagnetics.com

610-1000T

PART NUMBERS 610 - 1000T 1000 Turns OUTLINE DRAWING

The **610-1000T** Split Core Current Transformer is designed for assembly to an existing electrical installation without the need for dismantling the primary bus or cables. It incorporates a snap fit between the fixed and removable sections.

This transformer is intended for use with high input impedance devices that require signal voltages up to 5 VAC.

The output can be rectified and filtered for devices requiring DC input. The non-linearity and voltage drop of the rectifiers and filters must be considered in the choice of the loading impedance.

Application

For Energy Management Systems and Instrumentation Equipment having a High Input Impedance, eg. 14K ohms minimum

Frequency

50-400 Hz

Insulation Level 0.6 kV, BIL 10 kV full wave

Construction

The core and windings are encased in UL approved plastic

Continuous Thermal Current Rating Factor 330A at 30° C amb 250A at 55° C amb

Flexible Leads

UL 1015 105° C, CSA approved, #18 AWG, 24" long unless otherwise specified

Approximate Weight

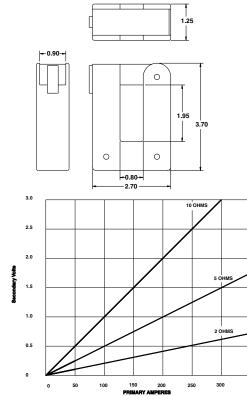
10 oz

Regulatory Agencies

F

e Professional ergy Monitoring mpany 3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

Web: http://www.crmagnetics.com 103


Split Core Current Transformer

613 Series

PART NUMBERS											
Part Number	Current Ratio	Burden VA	Accuracy at 60 Hz								
613-101	100:5	1.00	±5%								
613-1250	125:5	1.25	±5%								
613-151	150:5	1.50	±5%								
613-1750	175:5	1.75	±5%								
613-201	200:5	2.50	±4%								
613-251	250:5	2.50	±4%								
613-301	300:5	3.00	±2%								
613-401	400:5	3.00	±2%								
613-1000T	100:0.1	See Graph	±3%								

OUTLINE DRAWING

The Professional Energy Monitoring Company ISO 9001:2006 Quality Management System The **613** Series Split Core Current Transformer is designed for assembly to an existing electrical installation without the need for dismantling the primary bus or cables.

The Model 613-1000T is intended for use with high input impedance devices that require signal voltages up to 5 VAC.

The output can be rectified and filtered for devices requiring DC input. The non-linearity and voltage drop of the rectifiers and filters must be considered in the choice of the loading impedance.

Application

For Energy Management Systems and Instrumentation Equipment

Frequency

50-400Hz

Insulation

0.6 kV, BIL 10 kV full wave

Construction

The core and windings are encased in UL approved plastic

Continuous Thermal Current Rating

Factor Models 613-101 – 613-401: 1.33 at 30° C amb 1.00 at 55° C amb Model 613-1000T: 330A at 30° C amb 250A at 55° C amb

Flexible Leads

UL 1015 105° C, CSA approved, #16 AWG, 24" long unless otherwise specified

Approximate Weight

Caution

Proper safety precautions must be followed during installation by a trained electrician. Never install while bus is energized. The current transformer must have its secondary terminals short circuited or the burden connected, before energizing the primary circuit.

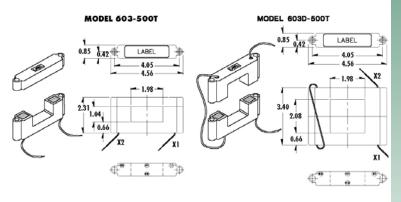
Regulatory Agencies

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

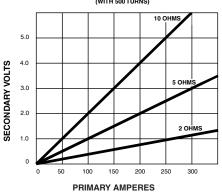
Web: http://www.crmagnetics.com

```
104
```

E-mail: sales@crmagnetics.com


F

603 & 603D Series



PART NUMBERS								
603 - 500T 500 Turns								
603D - 500T 500 Turns								

OUTLINE DRAWING

TYPICAL PERFORMANCE CHARACTERISTICS MODEL 603-5001 (WITH 500 TURNS)

The **603 & 603D** Split Core Current Transformers are designed for assembly to an existing electrical installation without the need for dismantling the primary bus or cables.

These transformers are intended for use with high input impedance devices that require signal voltages up to 5 VAC.

The output can be rectified and filtered for devices requiring DC input. The non-linearity and voltage drop of the rectifiers and filters must be considered in the choice of the loading impedance.

Application

For Energy Management Systems and Instrumentation Equipment Having a High Input Impedance, eg. 14K ohms minimum

Frequency

50-400Hz

Construction

The core and windings are encased in UL approved plastic

Insulation Level 0.6 kV, BIL 10 kV full wave

Continuous Thermal Current Rating Factor Model 603:

350A at 30° C amb. 260A at 55° C amb.

Flexible Leads

UL 1015 105° C, CSA approved, #22 AWG, 24" long unless otherwise specified

Approximate Weight Model 603-500T: 10 oz. Model 603D-500T: 12 oz.

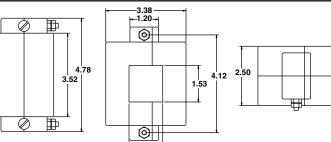
Regulatory Agencies

 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119

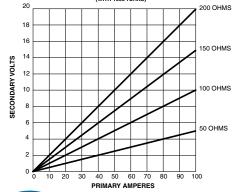
 Web: http://www.crmagnetics.com
 105
 E-mail: sales@crmagnetics.com

Split Core Current Transformer

604 Series



PART NUMBERS


Dunt Norther	Current Ratio	Durden VA	Assume as to CO He
Part Number	Current Katio	Burden VA	Accuracy at 60 Hz
604-101	100:5	1.00	±5%
604-1250	125:5	1.00	±5%
604-151	150:5	1.00	±4%
604-1750	175:5	1.00	±3%
604-201	200:5	1.00	±2%
604-251	250:5	2.00	±2%
604-301	300:5	2.00	±1.5%
604-351	350:5	2.50	±1.5%
604-401	400:5	2.50	±1.5%
604-1000T	100:0.1	See Graph	±3%

OUTLINE DRAWING

The **604** Series Split Core Current Transformer is designed for assembly to an existing electrical installation without the need for dismantling the primary bus or cables.

The Model 604-1000T is intended for use with high input impedance devices.

The output can be rectified and filtered for devices requiring DC input. The non-linearity and voltage drop of the rectifiers and filters must be considered in the choice of the loading impedance.

Application

For Energy Management Systems and Instrumentation

Frequency

50-400Hz

Insulation Level

0.6 kV, BIL 10 kV full wave

Continuous Thermal Current Rating

Factor Models 604-101 - 604-401:

1.33 at 30° C amb 1.00 at 55° C amb Model 604-1000T: 450A at 30° C amb 350A at 55° C amb

Terminals

10-32 brass studs with one flatwasher and two regular nuts

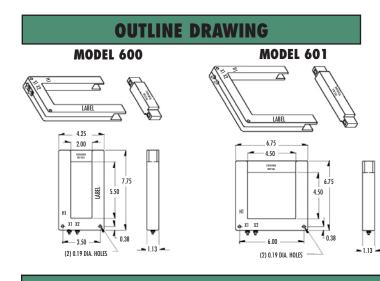
Flexible Leads

UL 1015 105° C, CSA approved, #16 AWG, 24" long unless otherwise specified

Approximate Weight 2.5 lbs

Regulatory Agencies

⁸ 3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119


Web: http://www.crmagnetics.com

106

600 & 601 Series

The 600 & 601 Series Split Core Current Transformers are designed for assembly to an existing electrical installation without the need for dismantling the primary bus or cables.

Application

For Energy Management Systems and Instrumentation

Frequency 50-400Hz

Construction The core and windings are encased in UL approved plastic

Insulation Level 0.6 kV. BIL 10 kV full wave

Continuous Thermal Current Rating Factor 1.33 at 30° C amb 1.00 at 55° C amb

Terminals

8-32 brass studs with one flatwasher and two regular nuts

Flexible Leads

UL 1015 105° C, CSA approved, #16 AWG, 24" long unless otherwise specified

Approximate Weight 1.5 lbs.

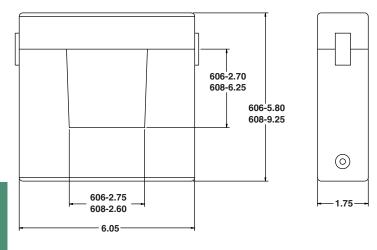
Caution

Proper safety precautions must be followed during installation by a trained electrician. Never install while bus is energized. The current transformer must have its secondary terminals short circuited or the burden connected, before energizing the primary circuit.

Regulatory Agencies

PART NUMBERS VA at ANSI Metering Class at 60Hz VA at ANSI Metering Class at 60Hz Part Number **Current Ratio** Part Number **Current Ratio** 1% Class 1% Class BO.2 BO.1 BO.2 BO.5 BO.1 BO.5 600-401 400:5A 1.5 2.4 -----601-401 400:5A 1.0 4.8 600-501 500:5A 2.0 2.4 601-501 500:5A 4.8 4.8 1.5 2.5 2.4 2.0 2.4 600-601 600:5A 2.4 600:5A 4.8 601-601 _____ ____ 5.0 800:5A 1.2 1.2 2.4 800:5A 2.5 1.2 2.4 600-801 601-801 4.8 600-102 1000:5A 7.5 1.2 1.2 2.4 601-102 1000:5A 5.0 1.2 1.2 600-122 1200:5A 15.0 0.6 1.2 1.2 601-122 1200:5A 10.0 1.2 1.2 600-152 1500:5A 20.0 0.6 1.2 601-152 1500:5A 15.0 1.2 1.2 0.6 1600:5A 20.0 1.2 1.2 600-162 0.6 0.6 601-162 1600:5A 15.0 1.2 30.0 600-202 2000:5A 0.6 0.6

4.8 2.4 1.2 1.2 0.6 601-202 2000:5A 20.0 0.6 0.6 1.2 urrent Transformer


Web: http://www.crmagnetics.com

107

606 & 608 Series

OUTLINE DRAWING

The **606 & 608** Split Core Current Transformers are designed for assembly to an existing electrical installation without the need for dismantling the primary bus or cables. These current transformers are a weather proof design suitable for use outdoor or in direct burial applications. The transformer cases are UV stabilized thermoplastic and filled with polyurethane resin. The mating surfaces of the transformer cores are protected by a rubber '0' ring.

Application

For Energy Management Systems and Instrumentation Equipment

Frequency 50-400Hz

Insulation Level 0.6 kV, BIL 10 kV full wave

Continuous Thermal Current Rating Factor

Model 606: 1.33 at 30° C amb., 1.00 at 55° C amb Models 608-501 – 608-202:

1.33 at 30° C amb., 1.00 at 55° C amb Models 608-252 – 608-322:

1.00 at 30° C amb., 0.70 at 55° C amb

Secondary Cable

Two No. 16 AWG, 6' Long, Direct Burial, UV Res. UL Type TC

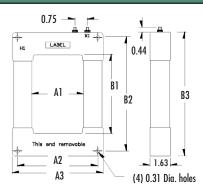
Weight Model 606: 4.5 lbs

Model 608: 7.5 lbs

Regulatory Agencies

PART NUMBERS										
Part	Current	Burden	ANSI Metering Class at		Part	Current	Burden	ANSI Metering Class at		
Number	Ratio	VA	60Hz		Number	Ratio	VA	60Hz		
606-201	200:5A	2.5	1%		608-501	500:5A	6.0	1%		
606-251	250:5A	3.0	1%		608-601	600:5A	8.0	1%		
606-301	300:5A	3.5	1%		608-801	800:5A	12.0	1%		
606-351	350:5A	4.0	1%		608-102	1000:5A	13.0	1%		
606-402	400:5A	5.0	1%		608-122	1200:5A	16.0	1%		
606-501	500:5A	6.0	1%		608-152	1500:5A	25.0	1%		
606-601	600:5A	8.0	1%		608-162	1600:5A	27.0	1%		
606-751	750:5A	10.0	1%		608-202	2000:5A	33.0	1%		
606-801	800:5A	12.0	1%		608-252	2000:5A	42.0	1%		
606-102	1000:5A	15.0	1%		608-302	3000:5A	50.0	1%		
606-122	1200:5A	20.0	1%		608-322	3200:5A	54.0	1%		

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119


Web: http://www.crmagnetics.com

```
108
```

Model 500 Series

OUTLINE DRAWING

	MAX RATIO					
A1′	A2′	A3′	B1′	B2′	B3′	
4.1	6.4	7.3	7.1	10.0	10.9	4000:5
4.1	6.4	7.3	11.7	14.5	15.4	8000:5
4.1	6.4	7.3	14.1	17.0	17.9	8000:5
4.1	6.4	7.3	18.1	21.0	21.9	8000:5
4.1	6.4	7.3	24.0	27.0	27.9	10000:5
4.1	6.4	7.3	30.1	33.0	33.9	10000:5
5.1	7.2	8.3	7.1	10.0	10.9	4000:5
5.1	7.2	8.3	11.7	14.5	15.4	8000:5
5.1	7.2	8.3	14.1	17.0	17.9	8000:5
5.1	7.2	8.3	18.1	21.0	21.9	8000:5
5.1	7.2	8.3	24.0	27.0	27.9	10000:5
5.1	7.2	8.3	30.1	33.0	33.9	10000:5
5.8	7.0	9.0	7.1	10.0	10.9	4000:5
5.8	7.0	9.0	11.7	14.5	15.4	8000:5
5.8	7.0	9.0	14.1	17.0	17.9	8000:5
5.8	7.0	9.0	18.1	21.0	21.9	8000:5
5.8	7.0	9.0	24.0	27.0	27.9	10000:5
5.8	7.0	9.0	30.1	33.0	33.9	10000:5
8.0	9.5	11.1	7.1	10.0	10.9	4000:5
8.0	9.5	11.1	11.7	14.5	15.4	8000:5
8.0	9.5	11.1	14.1	17.0	17.9	8000:5
8.0	9.5	11.1	18.1	21.0	21.9	8000:5
8.0	9.5	11.1	24.0	27.0	27.9	10000:5
8.0	9.5	11.1	30.1	33.0	33.9	10000:5
10.1	11.6	13.2	7.1	10.0	10.9	4000:5
10.1	11.6	13.2	11.7	14.5	15.4	8000:5
10.1	11.6	13.2	14.1	17.0	17.9	8000:5
10.1	11.6	13.2	18.1	21.0	21.9	8000:5
10.1	11.6	13.2	24.0	27.0	27.9	10000:5
10.1	11.6	13.2	30.1	33.0	33.9	10000:5

The Professional Energy Monitoring Company MACNETICS ISO 9001:2008 Quality Management System The **500** Series Split Core Current Transformer is designed to be assembled around an existing conductor or bus bar. The end marked "This end removable" may be disassembled and then reassembled around the conductors. Terminals are 8-32 brass studs with one flatwasher, lockwasher and regular nut. Flexible Leads are UL 1015 105° C, CSA approved, #16 AWG, 24" long unless otherwise specified

Application Metering

Frequency 50-400Hz

Insulation Level 0.6 kV, BIL 10 kV full wave

Continuous Thermal Current Rating Factor 1.33 at 30° C amb., 1.00 at 55° C amb

Approximate Weight 8 to 18 lbs

Regulatory Agencies

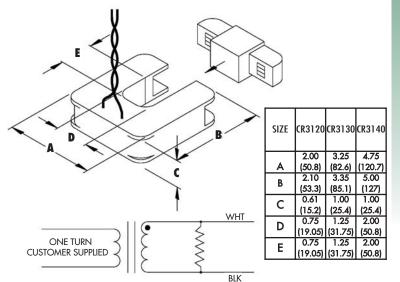
How to order take apart C.T.'S

T or L for Terminals or Leads Model Window width (A1)										
	X XXX - XXX									
The letter "X" must appear here	Window length (B1)									
Example: 500 T - 041 X 117 - 133										

The accuracy table below is for the 500T-041 X 117. Accuracies for other sizes are available from the factory. The dimensions in the table at the left are standard sizes. Other window lengths (B1) may be accommodated on special order. Window widths (A1) other than those listed are not available.

Current Ratio	Accuracy class with U.P.F. burden
300:5	±5% at 1.5 VA
400:5	±3% at 2.5 VA
500:5	±2% at 2.5 VA
600:5	±1% at 4 VA
750:5	±1% at 5 VA
800:5	±1% at 5 VA
1000:5	±1% at 7.5 VA
1200:5	±1% at 10.0 VA
1500:5	±1% at 12.5 VA
2000:5	±1% at 15.0 VA
2500:5	±1% at 25.0 VA
3000:5	±1% at 25.0 VA
3500:5	±1% at 25.0 VA
4000:5	±1% at 25.0 VA
5000:5	±1% at 30.0 VA
5000:5	±1% at 40.0 VA

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119


Web: http://www.crmagnetics.com

F

109 E-mail: sa

CR3120, CR3130, CR3140 Series

OUTLINE DRAWING

The **CR3120, CR3130, CR3140** Split Core Current Transformers are designed for assembly to an existing electrical installation without the need for dismantling the primary bus or cables. The **CR3120, CR3130, CR3140 Series** has one of the highest industry standards both for interleaving and the self locking mechanism.

Application

For Energy Management Systems and Instrumentation Equipment

Frequency 50-400Hz

Insulation Level 0.6 kV, BIL 10 kV full wave

Features:

Output 0.333 VAC at Rated Current Phase Angle <2 degrees measured at 50% rated current Linearity Accuracy +/- 1%

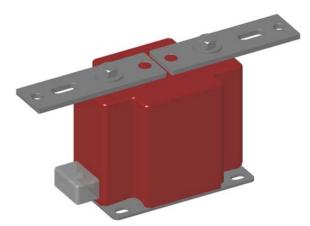
Secondary Cable Two No. 16 AWG, 8' Long,

Weight CR3120: 1.0 lbs CR3130: 1.0 lbs CR3140: 1.0 lbs

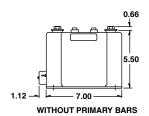
Regulatory Agencies

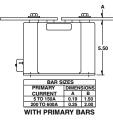
PART NUMBERS

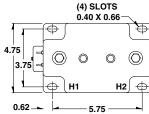
Part Number	Current Ratio	Part Number	Current Ratio	Part Number	Current Ratio
CR3120-5	5:0.333V	CR3130-50	50:0.333V	CR3140-100	100:0.333V
CR3120-10	10:0.333V	CR3130-100	100:0.333V	CR3140-200	200:0.333V
CR3120-25	25:0.333V	CR3130-150	150:0.333V	CR3140-400	400:0.333V
CR3120-50	50:0.333V	CR3130-200	200:0.333V	CR3140-600	600:0.333V
CR3120-70	70:0.333V	CR3130-250	250:0.333V	CR3140-800	800:0.333V
CR3120-100	100:0.333V	CR3130-300	300:0.333V	CR3140-1000	1000:0.333V
CR3120-150	150:0.333V	CR3130-400	400:0.333V	CR3140-1200	1200:0.333V
CR3120-200	200:0.333V	CR3130-600	600:0.333V	CR3140-1500	1500:0.333V

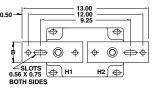

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

Web: http://www.crmagnetics.com


110


E-mail: sales@crmagnetics.com


CTW3-60-T50 & CTWH3-60-T50



OUTLINE DRAWING

CAUTION: Use only the Belleville washers supplied. Tighten to between 25 and 30 foot-pounds. Do not overtighten.

Part Number*	t Number* Current Rela			ISI Mete	ring Cla	**Thermal Current Rating 1		
	Ratio	Class	B0.1	B0.2	B0.5	BO.9	B1.8	second RMS Amps
CTW3-60-T50-050	5:5	T50	0.3	0.3	0.3	0.6	1.2	375
CTW3-60-T50-100	10:5	T50	0.3	0.3	0.3	0.6	1.2	1000
CTW3-60-T50-150	15:5	T50	0.3	0.3	0.3	0.6	1.2	1690
CTW3-60-T50-200	20:5	T50	0.3	0.3	0.3	0.6	1.2	1900
CTW3-60-T50-250	25:5	T50	0.3	0.3	0.3	0.6	1.2	2700
CTW3-60-T50-300	30:5	T50	0.3	0.3	0.3	0.6	1.2	2700
CTW3-60-T50-400	40:5	T50	0.3	0.3	0.3	0.6	1.2	4720
CTW3-60-T50-500	50:5	T50	0.3	0.3	0.3	0.6	1.2	4720
CTW3-60-T50-750	75:5	T50	0.3	0.3	0.3	0.6	1.2	8630
CTW3-60-T50-101	100:5	T50	0.3	0.3	0.3	0.6	1.2	8630
CTW3-60-T50-151	150:5	T50	0.3	0.3	0.3	0.6	1.2	14380
CTW3-60-T50-201	200:5	T50	0.3	0.3	0.3	0.6	1.2	17250
CTW3-60-T50-251	250:5	T50	0.3	0.3	0.3	0.6	1.2	17250
CTW3-60-T50-301	300:5	T50	0.3	0.3	0.3	0.6	1.2	37800
CTW3-60-T50-401	400:5	T50	0.3	0.3	0.3	0.6	1.2	37800
CTW3-60-T50-501	500:5	T50	0.3	0.3	0.3	0.6	1.2	37800
CTW3-60-T50-601	600:5	T50	0.3	0.3	0.3	0.6	1.2	37800

For ordering with primary bars, change model number to CTWH3.
 With a burden of B 0.1 or greater connected to the secondary.

Applications

Metering and relaying.

Frequency

50 - 400 Hz.

Maximum System Voltage 5.6kV, BIL 60kV full wave.

Continuous Thermal Current Rating Factor

1.50 at 30° C amb., 1.33 at 55° C amb. 150:5 and 600:5

1.33 at 30° C amb., 1.00 at 55° C amb. 250:5 1.00 at 30° C amb., 0.85 at 55° C amb.

Primary Terminals

1/2-13 bolts with one Belleville washer.

Secondary Terminals

Brass studs No. 10-32 with one flatwasher, lockwasher and regular nut.

Supplied with short circuiting secondary terminal cover

Vacuum cast in polyurethane resin.

Other ratios, secondary currents and dual ratios are available. Refer to factory.

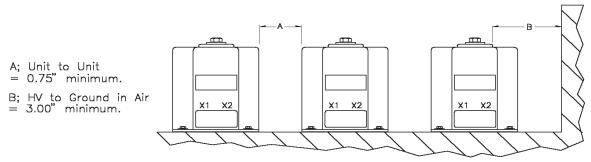
The transformers are tested for partial discharge to Canadian Standards CAN3-C13-M83. This test can also be carried out to IEC requirements if requested.

Approximate weight

20 lbs.

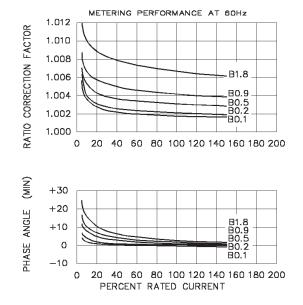
Regulatory Agencies

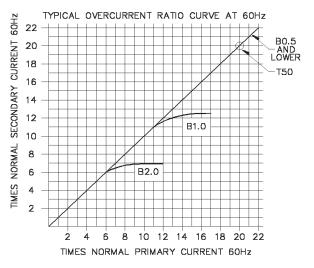
BAR SIZES										
PRIMARY CURRENT	DIMENSIONS									
	А	В								
5 TO 250A	0.19	1.50								
300 TO 1200A	0.25	2.00								


3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

Web: http://www.crmagnetics.com

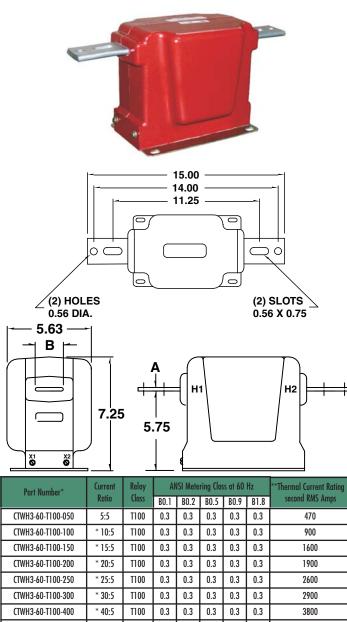
111


E-mail: sales@crmagnetics.com


CTW3-60-T50

RECOMMENDED MINIMUM SPACINGS

Recommended spacings are for guidance only. User needs to set appropriate values to assure performance for high potential test, impulse test, high humidity, partial discharge, high altitude, and other considerations like configuration.



3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com112E-mail: sales@crmagnetics.com

CTWH3-60-T100

			00.1	D0.2	D0.J	00.7	01.0	•
CTWH3-60-T100-050	5:5	T100	0.3	0.3	0.3	0.3	0.3	470
CTWH3-60-T100-100	* 10:5	T100	0.3	0.3	0.3	0.3	0.3	900
CTWH3-60-T100-150	* 15:5	T100	0.3	0.3	0.3	0.3	0.3	1600
CTWH3-60-T100-200	* 20:5	T100	0.3	0.3	0.3	0.3	0.3	1900
CTWH3-60-T100-250	* 25:5	T100	0.3	0.3	0.3	0.3	0.3	2600
CTWH3-60-T100-300	* 30:5	T100	0.3	0.3	0.3	0.3	0.3	2900
CTWH3-60-T100-400	* 40:5	T100	0.3	0.3	0.3	0.3	0.3	3800
CTWH3-60-T100-500	* 50:5	T100	0.3	0.3	0.3	0.3	0.3	4700
CTWH3-60-T100-750	* 75:5	T100	0.3	0.3	0.3	0.3	0.3	5900
CTWH3-60-T100-101	* 100:5	T100	0.3	0.3	0.3	0.3	0.3	8600
CTWH3-60-T100-151	* 150:5	T100	0.3	0.3	0.3	0.3	0.3	12900
CTWH3-60-T100-201	* 200:5	T100	0.3	0.3	0.3	0.3	0.3	17200
CTWH3-60-T100-251	* 250:5	T100	0.3	0.3	0.3	0.3	0.3	17200
CTWH3-60-T100-301	* 300:5	T100	0.3	0.3	0.3	0.3	0.3	34500
CTWH3-60-T100-401	* 400:5	T100	0.3	0.3	0.3	0.3	0.3	34500
CTWH3-60-T100-601	* 600:5	T100	0.3	0.3	0.3	0.3	0.3	66200
CTWH3-60-T100-801	* 800:5	T100	0.3	0.3	0.3	0.3	0.3	66200
CTWH3-60-T100-102	* 1000:5	T100	0.3	0.3	0.3	0.3	0.3	66200
CTWH3-60-T100-122	* 1200:5	T100	0.3	0.3	0.3	0.3	0.3	66200

** With a burden of B 0.1 or greater connected to the secondary.

Applications

Metering and relaying.

Frequency

50 - 400 Hz.

Maximum System Voltage 5.6kV, BIL 60kV full wave.

Continuous Thermal Current Rating Factor

1.50 at 30° C amb., 1.33 at 55° C amb. 250:5, 1000:5 & 1200:5-1.10 at 30° C amb., 0.85 at 55° C amb.

Primary Terminals Plated copper bars. See chart for sizes.

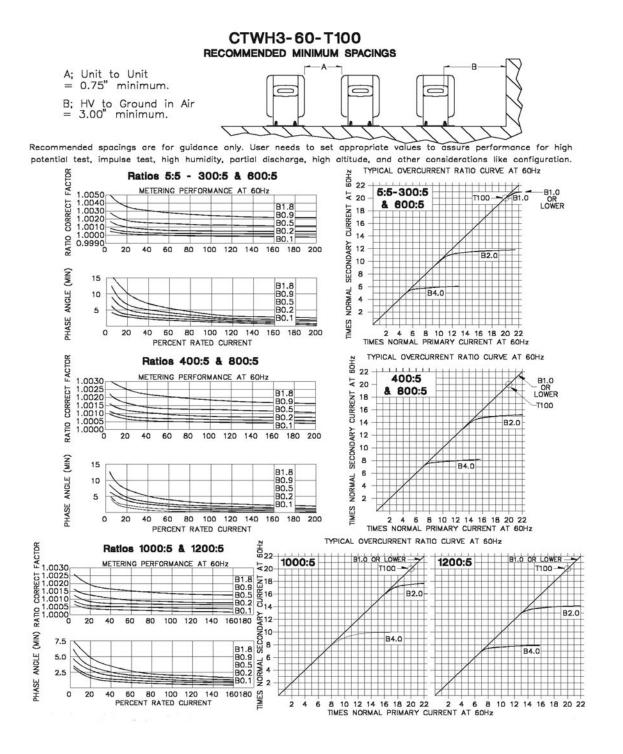
Secondary Terminals Brass screws No. 10-32 with one flatwasher and

one lockwasher.

Vacuum cast in polyurethane resin.

Other ratios, secondary currents and dual ratios are available. Refer to factory.

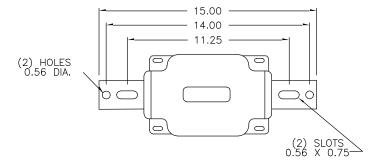
The transformers are tested for partial discharge to Canadian Standards CAN3-C13-M83. This test can also be carried out to IEC requirements if requested.

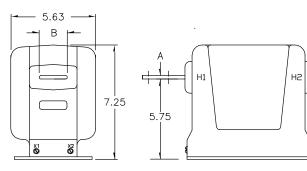

Approximate weight 41 lbs.

Regulatory Agencies

BAR SIZES									
PRIMARY CURRENT	DIMENSION:								
	А	В							
5 TO 250A	0.25	1.50							
300 TO 1200A	0.38	2.00							

3500 Scarlet Oak Blvd.St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119Web: http://www.crmagnetics.com113E-mail: sales@crmagnetics.com





3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com114E-mail: sales@crmagnetics.com

CTWH3-A-60-T90

Catalog Number* Current Relay			A	ISI Mete	ring Cla	*Thermal Current Rating 1		
	Ratio	Class	B0.1	B0.2	B0.5	B0.9	B1.8	second RMS Amps
CTWH3-A-60-T90-050	5:5	T90	0.1	0.1	0.1	0.1	0.2	470
CTWH3-A-60-T90-100	10:5	T90	0.1	0.1	0.1	0.1	0.2	900
CTWH3-A-60-T90-150	15:5	T90	0.1	0.1	0.1	0.1	0.2	1700
CTWH3-A-60-T90-200	20:5	T90	0.1	0.1	0.1	0.1	0.2	1920
CTWH3-A-60-T90-250	25:5	T90	0.1	0.1	0.1	0.1	0.2	2600
CTWH3-A-60-T90-300	30:5	T90	0.1	0.1	0.1	0.1	0.2	2900
CTWH3-A-60-T90-400	40:5	T90	0.1	0.1	0.1	0.1	0.2	3700
CTWH3-A-60-T90-500	50:5	T90	0.1	0.1	0.1	0.1	0.2	4700
CTWH3-A-60-T90-750	75:5	T90	0.1	0.1	0.1	0.1	0.2	5800
CTWH3-A-60-T90-101	100:5	T90	0.1	0.1	0.1	0.1	0.2	8600
CTWH3-A-60-T90-151	150:5	T90	0.1	0.1	0.1	0.1	0.2	12900
CTWH3-A-60-T90-201	200:5	T90	0.1	0.1	0.1	0.1	0.2	18000
CTWH3-A-60-T90-301	300:5	T90	0.1	0.1	0.1	0.1	0.2	28200
CTWH3-A-60-T90-401	400:5	T90	0.1	0.1	0.1	0.1	0.2	34000
CTWH3-A-60-T90-601	600:5	T90	0.1	0.1	0.1	0.1	0.2	51500

* With a burden of B 0.1 or greater connected to the secondary.

Applications

High accuracy metering and relaying.

Frequency

50 - 400 Hz.

Maximum System Voltage 5.6kV, BIL 60kV full wave.

Continuous Thermal Current Rating Factor 1.33 at 30° C amb., 1.0 at 55° C amb. 400:5

1.1 at 30° C amb., 0.85 at 55° C amb.

Primary Terminals Plated copper bars. See chart for sizes.

Secondary Terminals Brass screws No. 10-32 with one flatwasher & lockwasher.

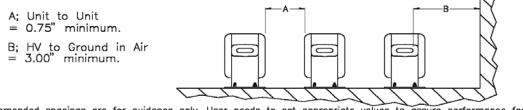
Vacuum cast in polyurethane resin.

Other ratios, secondary currents and dual ratios are available. Refer to factory.

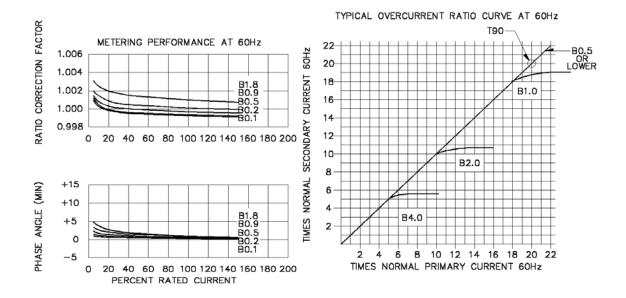
The transformers are tested for partial discharge to Canadian Standards CAN3-C13-M83. This test can also be carried out to IEC requirements if requested.

Approximate weight 41 lbs.

Regulatory Agencies


BAR SIZES									
PRIMARY CURRENT	DIMENSIONS								
	А	В							
5 TO 250A	0.25	1.50							
300 TO 1200A	0.38	2.00							

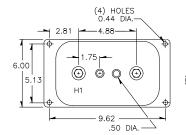
F

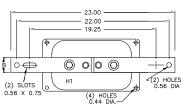

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com E-mail: sales@crmagnetics.com 115

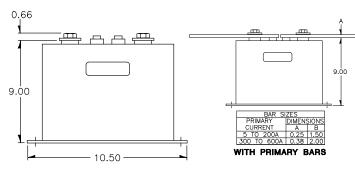
CTWH3-A-60-T90

RECOMMENDED MINIMUM SPACINGS


Recommended spacings are for guidance only. User needs to set appropriate values to assure performance for high potential test, impulse test, high humidity, partial discharge, high altitude, and other considerations like configuration.






3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com116E-mail: sales@crmagnetics.com

CTW5-L-110 & CTWH5-L-110

CAUTION: Use only the Belleville washers supplied. Tighten to between 25 and 30 foot-pounds. Do not overtighten.

Part Number*	Relay	A	VSI Mete	ring Cla	Thermal Current Rating			
	Ratio	Class	B0.1	B0.2	B0.5	B0.9	B1.8	1 second RMS Amps
CTW5-L-110-T20-050	5:5	T20	0.3	0.3	0.6	1.2	2.4	375
CTW5-L-110-T20-100	10:5	T20	0.3	0.3	0.6	1.2	2.4	590
CTW5-L-110-T20-150	15:5	T20	0.3	0.3	0.6	1.2	2.4	1200
CTW5-L-110-T20-250	25:5	T20	0.3	0.3	0.6	1.2	2.4	1700
CTW5-L-110-T20-300	30:5	T20	0.3	0.3	0.6	1.2	2.4	1700
CTW5-L-110-T20-400	40:5	T20	0.3	0.3	0.6	1.2	2.4	2400
CTW5-L-110-T20-500	50:5	T20	0.3	0.3	0.6	1.2	2.4	4715
CTW5-L-110-T25-750	75:5	T25	0.3	0.3	0.6	1.2	2.4	4715
CTW5-L-110-T25-101	100:5	T25	0.3	0.3	0.6	1.2	2.4	8625
CTW5-L-110-T25-151	150:5	T25	0.3	0.3	0.6	1.2	2.4	11500
CTW5-L-110-T30-201	200:5	T30	0.3	0.3	0.6	1.2	2.4	11500
CTW5-L-110-T20-251	250:5	T20	0.3	0.3	0.6	1.2	2.4	21700
CTW5-L-110-T25-301	300:5	T25	0.3	0.3	0.6	1.2	2.4	21700
CTW5-L-110-T30-401	400:5	T30	0.3	0.3	0.6	1.2	2.4	44700
CTW5-L-110-T35-501	500:5	T35	0.3	0.3	0.3	0.6	1.2	44700
CTW5-L-110-T40-601	600:5	T40	0.3	0.3	0.3	0.6	1.2	44700

* For ordering with primary bars, change model number to CTWH5-L. A test card is provided with each unit.

Applications

Metering and relaying.

Frequency

50 - 400 Hz.

Maximum System Voltage 15.5kV, BIL 110kV full wave.

Continuous Thermal Current Rating Factor

1.00 at 30° C amb., 0.85 at 55° C amb.

Primary Terminals 1/2-13 bolts with one Belleville washer.

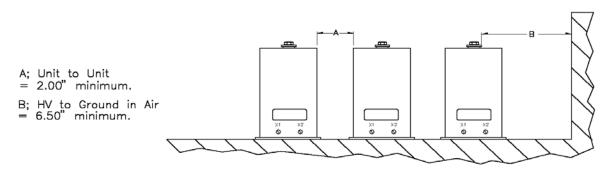
Secondary Terminals

Brass screws No. 10-32 with one flatwasher & lockwasher.

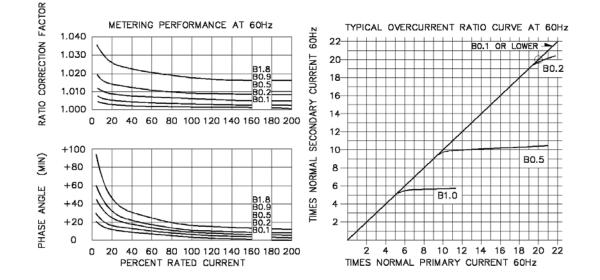
Vacuum cast in polyurethane resin.

Other ratios, secondary currents and dual ratios are available. Refer to factory.

The transformers are tested for partial discharge to Canadian Standards CAN3-C13-M83. This test can also be carried out to IEC requirements if requested.


Approximate weight 34 lbs.

Regulatory Agencies


BAR SIZES				
PRIMARY CURRENT	DIMENSIONS			
	А	В		
5 TO 250A	0.25	1.50		
300 TO 1200A	0.38	2.00		

3500 Scarlet Oak Blvd.St. LouisMOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com117E-mail: sales@crmagnetics.com

CTWH5 -L-110 RECOMMENDED MINIMUM SPACINGS

Recommended spacings are for guidance only. User needs to set appropriate values to assure performance for high potential test, impulse test, high humidity, partial discharge, high altitude, and other considerations like configuration.

 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119

 Web: http://www.crmagnetics.com
 118
 E-mail: sales@crmagnetics.com

Models 10WP & 189

The Model 10WP is a low ratio wound primary current transformer, suitable for primary currents up to 40 amperes. The Model 10WP table lists the most common current ratings. Primary terminals for the Model 10WP are: for ratios of 25:5 and below, No. 8-32 brass studs with one flatwasher, lockwasher and regular nut, for ratios of 30:5 and above, 1/4-20 brass studs with one flatwasher, lockwasher and regular nut.

Model 10WP

The Model 189 is a low ratio wound primary current transformer suitable for primary currents up to 100 amperes. The Model 189 table lists the most common current ratings. Primary terminals for the Model 189: for ratios of 30:5 and below are, No. 10-32 brass screws with one lockwasher (Dimension A=3.28), for ratios of 40:5 and above, 3/8-16 brass studs with one lockwasher and regular nut (Dimension A=4.10).

Model 189

Continuous Thermal Current Rating Factor

 $1.33~at~30^\circ$ C amb., $1.0~at~55^\circ$ C amb.

Frequency• 50 - 400 Hz.

Insulation Level

0.6 kV, BIL 10kV full wave.

Secondary Terminals

Brass studs No. 8-32 UNC with one flatwasher, lockwasher and regular nut.

Approximate weight

Model 10WP: 1.5 lbs.

Model 189: 0.75 lbs.

Regulatory Agencies

	Model 10WP				
Part Number	Current Ratio	ANSI Metering Class at 60 Hz			
		B0.1	B0.2		
10WP-0025	2.5:5	0.6	0.6		
10WP-005	5:5	0.6	0.6		
10WP-0075	7.5:5	0.6	0.6		
10WP-010	10:5	0.6	0.6		
10WP-015	15:5	0.6	0.6		
10WP-020	20:5	0.6	0.6		
10WP-025	25:5	0.6	0.6		
10WP-030	30:5	0.6	0.6		
10WP-040	40:5	0.6	0.6		

Model 189					
Part Number	Current Ratio	ANSI Metering	Class at 60 Hz		
		B0.1	B0.2		
189-0025	2.5:5	0.6	0.6		
189-005	5:5	0.6	0.6		
189-0075	7.5:5	0.6	0.6		
189-010	10:5	0.6	0.6		
189-015	15:5	0.6	0.6		
189-020	20:5	0.6	0.6		
189-025	25:5	0.6	0.6		
189-030	30:5	0.6	0.6		
189-040	40:5	0.6	0.6		
189-050	50:5	0.6	0.6		
189-060	60:5	0.6	0.6		
189-075	75:5	0.6	0.6		
189-080	80:5	0.6	0.6		
189-101	100:5	0.6	0.6		

urrent Transformers

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119

Web: http://www.crmagnetics.com

119

E-mail: sales@crmagnetics.com

 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119

 Web: http://www.crmagnetics.com
 120
 E-mail: sales@crmagnetics.com

Potential Transformers

CR Magnetics carries an extensive line of Potential Transformers that are used to monitor and measure various levels of AC voltages. Typically modeled similarly to common power transformers, potential transformers are specially designed to provide accurate input versus output curves over a wide range of loading. Whereas power transformers are typically designed for 70 to 80 percent regulation, potential transformers are designed for 99% or better regulation.

The 467, 468, and 460 Series of voltage transformers are designed to give accurate measurement of low voltage systems (up to 600 VAC) by stepping down higher voltages to 120 VAC. Useful for monitoring and measuring incoming building or factory voltages.

The 3PT-1-45 and PT3-2-45 Series of potential transformers are designed to give accurate measurement of medium voltage systems up to 5KV by stepping down higher voltages to 120 VAC. Useful for monitoring and measuring larger power systems and distribution networks containing medium voltage loads.

The PTW3-1-60 Series of potential transformers are designed to give accurate measurement of medium voltage systems up to 5KV by stepping down higher voltages to 120 VAC. Useful for monitoring and measuring larger power systems and distribution networks containing medium voltage loads. These devices have increased capability to drive larger VA loads.

Contact **CR Magnetics** for other styles of potential transformers including medium voltage units up to 32K VAC, as well as custom designs tailored to fit the specific accuracy and energy capability required by any application.

 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119

 Web: http://www.crmagnetics.com
 121
 E-mail: sales@crmagnetics.com

G

Group 1. Transformers for application with 100% of rated primary voltage connected to the primary terminals either line-to-line or line-to-ground. These transformers are capable of operating at 125% of rated volts in emergency conditions, but cannot exceed 65% of their thermal burden rating, with a limit of 75°C. temperature rise. This will result in a reduced life expectancy. Consult the factory for details. continuous operation at 110% of rated voltage is permissible, provided that the thermal burden rated volt - amperage is not exceeded.

Rated Primary Voltage for Rated System Voltage Line-to-Line	Turns Ratio	Basic Impulse Insulation Level (kV Crest)
840 1455Y*	7:1	10
840 1455Y*	10:1	10
840 1455Y*	20:1	10
840 1455Y*	35:1	10
840 1455Y*	40:1	10

Rated Primary Voltage for Rated System Voltage Line-to-Line	Turns Ratio	Basic Impulse Insulation Level (kV Crest)
7200 for 12470Y	1:1	10
8400 for 14560Y	1:1	10
12000 for 20785Y	1:1	10
14400 for 24940Y	1:1	10

Group 2.

Transformers are for line-to-line connection, but may be connected line-to-neutral at a voltage of the rated line volts divided by the square root of three. continuous operation at 110% of rated voltage is permissible, provided that the thermal burden rated voltamperes is not exceeded.

Rated Primary Voltage for Rated System Voltage Line-to-Line	Turns Ratio	Basic Impulse Insulation Level (kV Crest)
2400 for 2400Y	20:1	45
3300 for 3300Y*	30:1	60 or 45
4200 for 4200Y*	35:1	60 or 45
4800 for 4800Y	40:1	60 or 45
7200 for 7200Y	60:1	75 or 110
8400 for 8400Y*	70:1	75 or 110
11000 for 11000Y	100:1	95 or 110

Rated Primary Voltage for Rated System Voltage Line-to-Line	Turns Ratio	Basic Impulse Insulation Level (kV Crest)
12000 for 12000Y	100:1	95 or 110
13200 for 13200Y	110:1	95 or 110
14400 for 14400Y	120:1	95 or 110
18000 for 18000Y*	150:1	125*
21000 for 21000Y*	175:1	125*
24000 for 24000Y	200:1	125 or 150
27600 for 27600Y*	240:1	150 or 200
34500 for 34500Y	300:1	150 or 200

Group 4.

Transformers are for line-to-ground connection, indoors only. The neutral terminal is insulated to withstand a test voltage of 10kV. They may be continuously operated at 110% of rated voltage, provided that the thermal burden rated volt-amperes is not exceeded. Group 4A transformers are capable of operating at 125% of rated volts in emergency conditions, but cannot exceed 65% of their thermal burden rating, with a limit of 75°C. temperature rise. This will result in a reduced life expectancy. Consult the factory for details.

Group 4A	for Operation at 100% Ra	ted Voltage	Group 4B	for Operation at 58% Rated V	oltage
Rated Primary Voltage for Rated System Voltage Line-to-Line	Turns Ratio	Basic Impulse Insulation Level (kV Crest)			Basic Impulse Insulation Level (kV Crest)
2400 for 4160 GND Y	20:1	65 or 45*	4200 for 4160 GND Y	35:1	65 or 45
2400 IOF 4100 GND F	20:1	03 OF 43	4800 for 4800 GND Y	40:1	65 or 45
4200 for 7200 GND Y	35:1	75	7200 for 7200 GND Y	60:1	75
4800 for 8320 GND Y	40:1	75	8400 for 8400 GND Y	70:1	75
7200 for 12470 Y	60:1	110	11000 for 11000 GND Y	100:1	110
8400 for 14560 GND Y	70:1	110	12000 for 12000 GND Y	100:1	110
* Not recognized in ANSI/IEEE C57.13		13200 for 13200 GND Y	110:1	110	
		14400 for 14400 GND V	120.1	110	

NOTE: Voltage Transformers connected line-to-ground on an ungrounded system cannot be considered to be grounding transformers and must be operated with the secondaries in closed delta because excessive currents may flow in the delta. For further details see ANSI/IEEE C57.13

1. Delta Connected Supply Systems

When applying voltage transformers to ungrounded delta connected supply systems, the transformer must not be connected in wye with the wye-point connected to neutral ground, or ungrounded. The advent of zero sequence currents caused by a ground fault in the system will cause damage, and eventual destruction of the transformer if the fault is not quickly removed.

2. Ferro resonance

Most voltage transformers are lightly loaded, particularly when associated with watthour metering and relaying schemes. If the voltage transformer has one primary lead grounded, and during an abnormal condition creating a large overvoltage, the transformer may saturate, and its impedance may cause a resonance with the system capacitance. This resonance, or oscillation, may be sustained and could destroy the voltage transformer. If, however, the secondaries are connected in delta, with a broken arrow, and a suitable resistor is connected across the broken corner, then ferro resonance can be damped. Our recommendation for the resistive value is shown on the catalog sheet where it applies. The power rating is determined by the user.

3. Secondary Circuit Check

Immediately prior to connecting the burden and leads to the transformer, a check of the impedance at that circuit should be made. This will avoid a possible short-circuit connection to the transformer, if a short-circuit is applied to the transformer, it can be withstood for one second. Note: Only secondary circuit fuses can adequately protect the transformer from such a short circuit.

4. Primary Fuse Rating

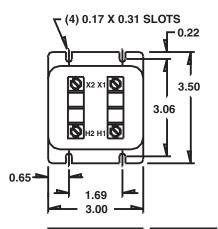
Values shown are suggested for normal installations, in order to protect the system from a voltage transformer failure. Higher ratings at users option, may be used to avoid unusual clearing due to conditions resulting from magnetizing in-rush.

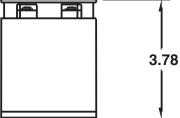
VOLTAGE CLASS	NO. OF BUSHINGS	CONNECTION	LV 1 MIN 60Hz	H2 1 MIN 60Hz	HV 1 MIN 60Hz	INDUCED 18 SEC. 400Hz
5kV	1	L-GND N	2.5kV	10 kV	NA	15kV OR 19kV
JKV	2	L-L	2.5kV	NA	15kV OR 19kV	DOUBLE VOLTAGE
8.7kV	1	L-GND N	2.5kV	10 kV	NA	26kV
0.7 KV	2	L-L	2.5kV	NA	26kV	DOUBLE VOLTAGE
15kV	1	L-GND N	2.5kV	10 kV	NA	34 kV
TOKV	2	L-L	2.5kV	NA	34kV OR 36kV	DOUBLE VOLTAGE
25kV	1	L-GND N	2.5kV	10 kV	NA	kV
ZOKV	2	L-L	2.5kV	NA	kV	DOUBLE VOLTAGE
34.5kV 1 2	1	L-GND N	2.5kV	10 kV	NA	70 kV
	2	L-L	2.5kV	NA	70kV OR 80kV	DOUBLE VOLTAGE

ROUTINE FACTORY TESTS

Routine Factory Tests include: Polarity, accuracy, and partial discharge per CANADIAN STANDARDS (CAN3-C13-M83) (Partial discharge can also be carried out to IEC requirements on request)

ANSI BURDEN DATA


CONNECTION	VA	POWER FACTOR	ANGLE
W	12.5	0.10	84.3°
Х	25	0.70	45.6°
М	35	0.20	78.5°
Y	75	0.85	31.8°
Z	200	0.85	31.8°
72	400	0.85	31.8°



3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com 123 E-mail: sales@crmagnetics.com

467

The 467 Series of voltage transformers are designed to give accurate measurement of low voltage systems (up to 600 VAC) by stepping down higher voltages to 120 VAC. Useful for monitoring and measuring incoming building or factory voltages.

Frequency

-60 Hz.

*Models designed specifically for 50 hz operations are available with reduced performance. Contact factory for details

Standard Secondary Voltage: 120 Volts

Use with CR Magnetics Transducers

Insulation Level: 600 Volt, 10 kV BIL full wave

Accuracy Class:

+/- 1% at all burdens up to 5 vA at 1.0 and 0.95 P.F.

Thermal Rating:

40 VA at 30° C . amb., 27 VA at 55°C. amb Terminals are No. 6-32 screws with one lockwasher and one flatwasher.

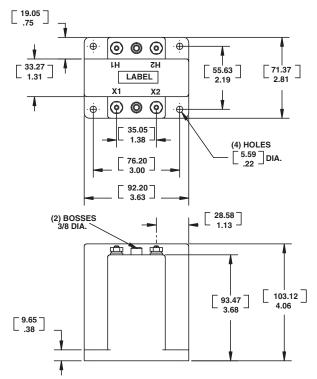
Approximate weight 2.5 lbs.

Regulatory Agencies:

Manufactured to meet the requirements of ANSI/IEEE C57.13

PART NUMBERS

Part Number	Voltage Rating	Turns Ratio	Rec. Primary Fuse Rating
467-069	69.3:120	0.58:1	1.5
467-120	120:120	1:1	1.0
467-208	208:120	1.73:1	0.5
467-240	240:120	2:1	0.5
467-277	277:120	2.31:1	0.5
467-288	288:120	2.4:1	0.4
467-300	300:120	2.5:1	0.4
467-346	346:120	2.88:1	0.4
*467-480	*480:120	4:1	0.25
*467-600	*600:120	5:1	0.25



3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com124E-mail: sales@crmagnetics.com

G

The 468 Series of potential transformers are designed to give accurate measurement of low voltage systems (up to 600 VAC) by stepping down higher voltages to 110 VAC. Useful for monitoring and measuring incoming building or factory voltages.

Frequency

60 Hz.

*Models designed specifically for 50 hz operations are available with reduced performance. Contact factory for details

Standard Secondary Voltage:

120 Volts Use with CR Magnetics Transducers

Insulation Level:

600 Volt, 10 kV BIL full wave

Accuracy Class:

+/- 0.6% at all burdens up to 7.5 VA at 1.0 and +/- 1.5% 20 VA burden

Thermal Rating:

75 VA at 30° C . amb., 50 VA at 55°C. amb Terminals are No. 10-32 screws with one lockwasher and one flatwasher.

LR89403

Approximate weight 4 lbs.

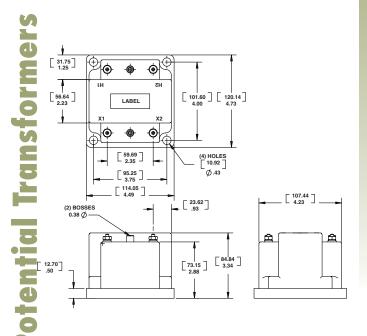
Regulatory Agencies:

Manufactured to meet the requirements of ANSI/IEEE C57.13

PART NUMBERS

Part Number	Voltage Rating	Turns Ratio	Rec. Primary Fuse Rating
468-069	69.3:120	0.58:1	3.0
468-120	120:120	1:1	2.0
468-208	208:120	1.73:1	1.0
468-240	240:120	2:1	1.0
468-277	277:120	2.31:1	1.0
468-288	288:120	2.4:1	0.75
468-300	300:120	2.5:1	0.75
468-346	346:120	2.88:1	0.75
*468-480	*480:120	4:1	0.50
*468-600	*600:120	5:1	0.40

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119


Web: http://www.crmagnetics.com

125

G

460

The 460 Series of Voltage transformers are designed to give accurate measurement of low voltage systems (up to 600 VAC) by stepping down higher voltages to 110 VAC. Useful for monitoring and measuring incoming building or factory voltages.

Frequency

60 Hz.

*Models designed specifically for 50 hz operations are available with reduced performance. Contact factory for details

Standard Secondary Voltage: 120 Volts

Use with CR Magnetics Transducers

Insulation Level: 600 Volt, 10 kV BIL full wave

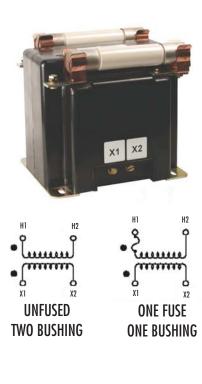
Accuracy Class: 0.6 W, 1.2 X at 60 Hz.

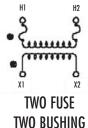
Thermal Rating:

150 VA at 30° C . amb., 100 VA at 55°C. amb Terminals are No. 10-32 screws with one lockwasher and one flatwasher.

Approximate weight 7.75 lbs.

Regulatory Agencies:


Manufactured to meet the requirements of ANSI/IEEE C57.13


PART NUMBERS

Part Number	Voltage Rating	Turns Ratio	Rec. Primary Fuse Rating
460-069	69.3:120	0.58:1	5.0
460-120	120:120	1:1	4.0
460-208	208:120	1.73:1	2.0
460-240	240:120	2:1	2.0
460-277	277:120	2.31:1	2.0
460-288	288:120	2.4:1	1.5
460-300	300:120	2.5:1	1.5
460-346	346:120	2.88:1	1.5
*460-480	*480:120	4:1	1.0
*460-600	*600:120	5:1	0.75

3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com126E-mail: sales@crmagnetics.com

The PT3-1-45 and PT3-2-45 Series of potential transformers are designed to give accurate measurement of medium voltage systems up to 5KV by stepping down higher voltages to 120 VAC. Useful for monitoring and measuring larger power systems and distribution networks containing medium voltage loads.

Frequency

60 Hz.

Maximum System Voltage:

5.6kV, BIL 45kV. Use with CR Magnetics Transducers

Accuracy Class:

0.3 WX, 0.6 MY,1,2Z at 100% rated voltage with 120V based ANSI Burden 0.6 WX, 1.2 MY at 58% rated voltage with 69.3V based on ANSI burden

Thermal Rating:

600 VA at 30° C . amb., 400 VA at 55°C. amb

Switch gear style is similar to fused style. No fuse or Fuse clip is provided, but inserts for fuse clips are supplied.

Approximate weight 20 lbs., unfused

LR89403

Regulatory Agencies:

Manufactured to meet the requirements of ANSI/IEEE C57.13

	PART NUMBERS							
	TWO BUSHING (a) CATALOG NUMBERS							
GROUP	PRIMARY Voltage	RATIO	SECONDARY Voltage	UNFUSED	FUSES	FUSE CLIPS ONLY (d)	SWITCHGEAR STYLE	
1	840	7:1	120	PT3-2-45-841	PT3-2-45-841FF	PT3-2-45-841CC	PT3-2-45-841SS	
1	1200	10:1	120	PT3-2-45-122	PT3-2-45-122FF	PT3-2-45-122CC	PT3-2-45-122SS	
1	2400	20:1	120	PT3-2-45-242	PT3-2-45-242FF	PT3-2-45-242CC	PT3-2-45-242SS	
2	3300	30:1	110-50Hz	PT3-2-45-332	PT3-2-45-332FF	PT3-2-45-332CC	PT3-2-45-332SS	
2	4200	35:1	120	PT3-2-45-422	PT3-2-45-422FF	PT3-2-45-422CC	PT3-2-45-422SS	
2	4800	40:1	120	PT3-2-45-482	PT3-2-45-482FF	PT3-2-45-482CC	PT3-2-45-482SS	

	One Bus	shing (b)			CATALOG NUMBERS			
GROUP	PRIMARY	RATIO	SECONDARY Voltage	R _{FR}				
	VOLTAGE	KATIO		(c)	FUSES	FUSE CLIPS ONLY (d)	SWITCHGEAR STYLE	
4A	2400	20:1	120	190	PT3-1-45-242F	PT3-1-45-242C	PT3-1-45-242S	
4B	4200	35:1	120	190	PT3-1-45-422F	PT3-1-45-422C	PT3-1-45-422S	
AB	4800	40:1	120	190	PT3-1-45-482F	PT3-1-45-482C	PT3-1-45-482S	

PT3-1-45 and PT3-2-45

- (a) Two fuse transformers should not be used for Y connections. It is preferred practice to connect one lead from each voltage transformer directly to the neutral terminal, using a fuse int he line side of the primary only. By using this connection a transformer can never be made "live" from the side by reason of a blown fuse in the neutral side. For continuous operation the transformer primary voltage should not exceed 110% of rated value.
- (b) Voltage transformers connected line-to-ground cannot be considered to be grounding transformers and must not be operated with the secondaries in closed delta because excessive currents may flow in the delta.
- (c) Values in table are in iohms.
- (d) Fuse clips noted as "CC or "C" accept fuses with 1.0" Dia. caps and 5" centers. Fuses clips with a suffix "CCS" or "CS" accept fuses with 0.81 in. caps and 5 in. clip centers

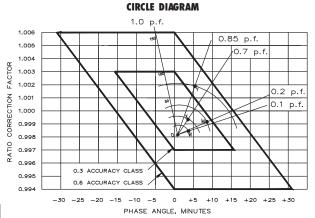
Note: It is recommended that system line-to-line voltage not exceed the transformer maximum system voltage level.

FUSE FOR MODEL PT3 TRANSFORMER	RATING VOLTS	INTERRUPTING AMPERES (SYM)	SUGGESTED RATING CONTINUOUS AMPERES	CAP DIA . INCHES (a)	LENG TH INCHES	CLIP CENTERS INCHES
2400:120V	5.5kV	45,000	2.0E	1.0	5.63	5.00
3300:110V	5.5kV	45,000	2.0E	1.0	5.63	5.00
4200:120V	5.5kV	45,000	1.0E	1.0	5.63	5.00
4800:120V	5.5kV	45,000	1.0E	1.0	5.63	5.00

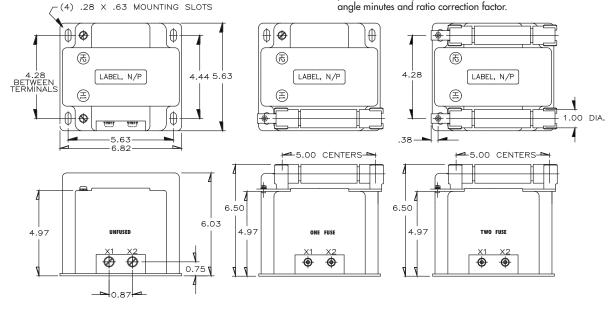
Primary terminals that are fused are 1/4-20 brass screws with one flatwasher and lockwasher and two nuts.

Secondary terminals are No. 10-32 brass screws with one flatwasher and lockwasher.

RECOMMENDED MINIMUM SPACINGS

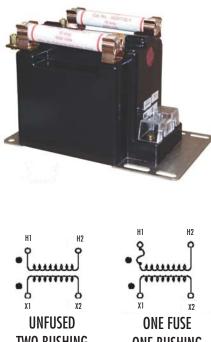

A= Unit to Unit = $0.75^{\prime\prime}$ m in im um.

(4)

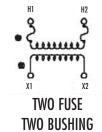

B= HV to Ground in air = 3.00" minimum

Recommended spacing are for guidance only User needs to set appropriate values to assure

performance for high potential test, impulse test, high humidity, partial discharge, high altitude, and other considerations like configuration.



The circle diagram can be used to predict the performance of a transformer for various loads and power factors. A convenient scale of volt-ampere is shown on the unity power line (u.p.f.) and commences at the zero or no-load locus. To use the diagram, measure the known V.A. and scribe an arc about the "Zero" locus of a length that contains the angle of the burden power factor. The point at which the arc terminates is the error locus in phase angle minutes and ratio correction factor.



3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 E-mail: sales@crmagnetics.com Web: http://www.crmagnetics.com 128

TWO BUSHING ONE BUSHING

The PTW3-1-60 Series of potential transformers are designed to give accurate measurement of medium voltage systems up to 5KV by stepping down higher voltages to 120 VAC. Useful for monitoring and measuring larger power systems and distribution networks containing medium voltage loads. These devices have increased capability to drive larger VA loads.

Frequency

60 Hz.

Maximum System Voltage:

5.6kv, BIL 60kV. Use with CR Magnetics Transducers

Accuracy Class:

0.3 WXMY, 1.2 Z at 100% rated voltage with 120V based ANSI Burden 0.6 WX, 1.2 MY at 58% rated voltage with 69.3V based on ANSI burden

Thermal Ratina:

750 VA at 30° C . amb., 500 VA at 55°C. amb

Approximate weight 34 lbs., unfused

Regulatory Agency:

Manufactured to meet the requirements of ANSI/IEEE C57.13

	PART NUMBERS									
[TWO BUSHING (a) CATALOG NUMBERS								
	GROUP	PRIMARY Voltage	RATIO	SECONDARY Voltage	UNFUSED	FUSES	FUSE CLIPS ONLY (d)	SWITCHGEAR STYLE		
ľ	1	*2400	20:1	120	PTW3-2-60-242	PTW3-2-60-242FF	PTW3-2-60-242CCSorCCL	PTW3-2-60-242SS		
	2	3300	30:1	110-50Hz	PTW3-2-60-332	PTW3-2-60-332FF	PTW3-2-60-332CCSorCCL	PTW3-2-60-332SS		
[2	4200	35:1	120	PTW3-2-60-422	PTW3-2-60-422FF	PTW3-2-60-422CCSorCCL	PTW3-2-60-422SS		
[2	*4800	40:1	120	PTW3-2-60-482	PTW3-2-60-482FF	PTW3-2-60-482CCSorCCL	PTW3-2-60-482SS		

	One Bus	shing (b)			CATALOG NUMBERS			
GROUP	PRIMARY	RATIO	SECONDARY	R _{FR}				
	VOLTAGE	KAIIO	VOLTAGE	(c)	FUSES	FUSE CLIPS ONLY (d)	SWITCHGEAR STYLE	
4A	*2400	20:1	120	230	PTW3-1-60-242F	PTW3-1-60-242CSorCL	PTW3-1-60-242S	
4B	*4200	35:1	120	230	PTW3-1-60-422F	PTW3-1-60-422CSorCL	PTW3-1-60-422S	
4B	*4800	40:1	120	230	PTW3-1-60-482F	PTW3-1-60-482CSorCL	PTW3-1-60-482S	

PTW3-1-60

(a) Two fuse transformers should not be used for Y connections. It is preferred practice to connect one lead from each voltage transformer directly to the neutral terminal, using a fuse in the line side of the primary only. By using this connection a transformer can never be made "live" from the line side by reason of a blown fuse in the neutral side. For continuous operation the transformer primary voltage should not exceed 110% of rated value.

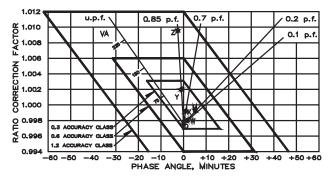
(b) Voltage transformers connected line-to-ground cannot be considered to be grounding transformers and must not be operated with the secondaries in closed delta because excessive currents may flow in the delta.

(c) Values in table are in ohms.

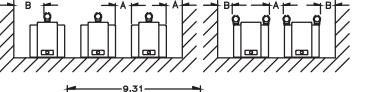
(d) Fuse clips noted as "CCS" or "CS" accept fuses with 1.0" Dia. caps and 5" clip centers. Fuses clips with a suffix "CCL" or "CL" accept fuses with 1.63 dia. caps and 5.88" clip centers.

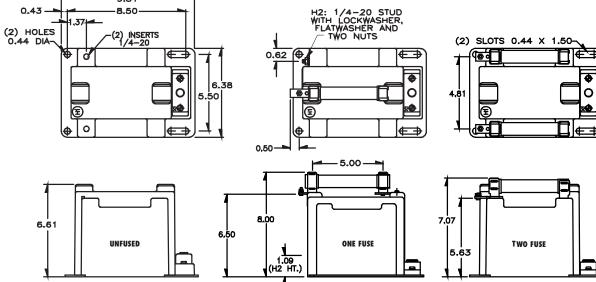
Note: It is recommended that system line-to-line voltage not exceed the transformer maximum system voltage level.

FUSE FOR MODEL PT W3 TRANSFORMER	RATING VOLTS	INTERRUPTING AMPERES (SYM)	SUGGESTED RATING CONTINUOUS AMPERES	CAP DIA. INCHES (d)	LENGTH INCHES	CLIP CENTERS INCHES
2400:120V	5.5kV	45,000	2.0E	1.0	5.63	5.00
3300:110V	5.5kV	45,000	2.0E	1.0	5.63	5.00
4200:120V	5.5kV	45,000	1.0E	1.0	5.63	5.00
4800:120V	5.5kV	45,000	1.0E	1.0	5.63	5.00


- Primary terminals that are unfused are 1/4-20 brass screws with one flatwasher and lock washer.
- Primary terminals that are fused are 1/4-20 brass screws with one flatwasher and lock washer and two nuts.
- Secondary terminals are No. 10-32 brass screws with one flatwasher and lock washer.
- The core and coil assembly is encased in a plastic enclosure and vacuum encapsulated in polyurethane resin.
- Thermal burden rating is for 120 volt secondaries.
- Switch gear style is similar to fused style. No fuse or fuse clip is provide, but inserts for fuse clips are supplied.

RECOMMENDED MINIMUM SPACINGS

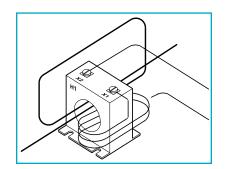

- A = Unit to Unit or to Ground = 1.00" minimum.
- \mathbf{B} = HV to Ground in air = 3.00" minimum.


Recommended spacing are for guidance only. User needs to set appropriate values to assure performance for high potential test, impulse test, high humidity, partial discharge, high altitude, and other considerations like configuration.

CIRCLE DIAGRAM

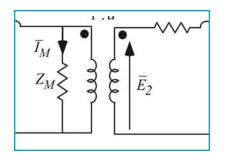
The circle diagram can be used to predict the performance of a transformer for various loads and power factors. A convenient scale of volt-ampere is shown on the unity power factor line (u.p.f) and commences at the zero or no-load locus. To use the diagram, measure the known V.A. and scribe an arc about the "Zero" locus of a length that contains the angle of the burden power factor. The point at which the arc terminates is the error locus in phase angle minutes and ratio correction factor.

3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com130E-mail: sales@crmagnetics.com

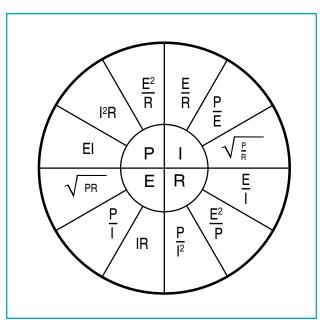

G

pplications

H


Applications, Guides, and References

As part of our commitment to customer service, the following pages contain some of the most common application notes, as well as some handy reference material that makes implementing your own instrumentation system easy and fast. All our information is also available for download at www.crmagnetics.com



The **Application Guides** are basic applications and design notes for using electrical properties instrumentation products. Included are typical applications of parts, adjusting and understanding transfer functions of sensors and transducers, and design aids and applications to implement full systems.

The **Technical Reference** documents contain handy lookup information on 3 phase and single phase power systems, Ohm's law, and mathematical models of sensors.

 $C \xrightarrow{A} 120 (240) [480] \\ 120$

The Professional Energy Monitoring Company MACNETICS ISO 9001:2008 Quality Management System

 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119

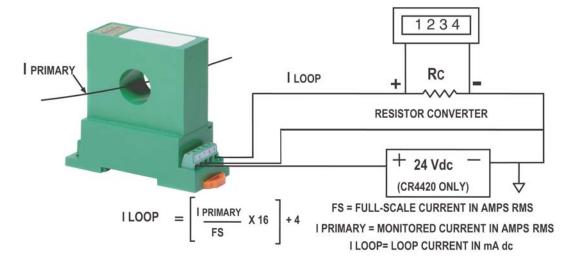
 Web: http://www.crmagnetics.com
 131
 E-mail: sales@crmagnetics.com

Applications

PAGE 133	Developing voltages from 4 to 20 mA Current Loops
PAGE 134	Using the CR4210/11 Self Powered Current Transducer
PAGE 135	Measuring 3 Phase Currents with the CR4210/11 Transducer
PAGE 136	Using the CR4220/60 Loop Powered Current Transducer
PAGE 137	3 Phase 3 Wire Active Power Measurement using the CR6230/40 Power Transducer
PAGE 138	3 Phase 4 Wire Active Power Measurement using the CR6250/60 Power Transducer
PAGE 139	Motor Current Monitoring using the CR4395 Current Sensing Relay
PAGE 140	Detecting Open Heaters and Lamps using the CR4395 Current Sensing Relay
PAGE 140	3 Phase Imbalance and Ground Fault Detection using the CR7310 Ground Fault Sensor
PAGE 142	The CR45 as an Open Heater/Open Winding Indicator
PAGE 142	Field Adjustment of Current Transformer Ratio
PAGE 143	Selecting Revenue ANSI Class Metering Current Transformers
PAGE 144	Using Auxiliary Current Transformers with Other CR Devices
PAGE 146	Precision Rectifier Circuit for Current Transformer Signal Conditioning
PAGE 147	Low Cost Fan Control with Hysteresis
PAGE 148	Index of Common Terms used in the Electrical Measurement Industry
PAGE 152	Users Guide Concerning Errors in CT Ratio
PAGE 154	Table Listing Electrical Operating and Full Load Current of various HP Motors
PAGE 154	Commonly Used Voltages and Power Supplies for the United States
PAGE 155	Illustration of 3 Phase Circuits with Loads and Currents Calculated
PAGE 156	Flow / Wave Soldering Specification
PAGE 157	OHM'S LAW for DC and AC Circuits
PAGE 158	Listing of Books, Standards, and Articles Relating to Electrical Properties Measurement

All CR Magnetics applications and reference material can be found online

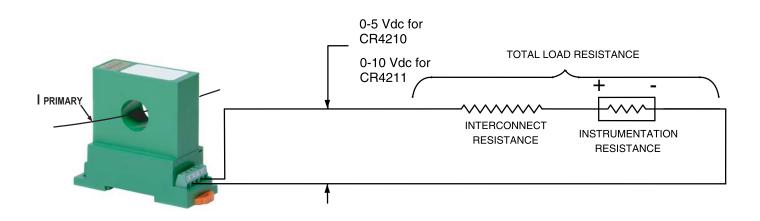
www.crmagnetics.com


Just type in crmagnetics.com, and go to the Technical Guides Button!!

3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com E-mail: sales@crmagnetics.com 132

Developing Voltage From 4-20mA Current Loops

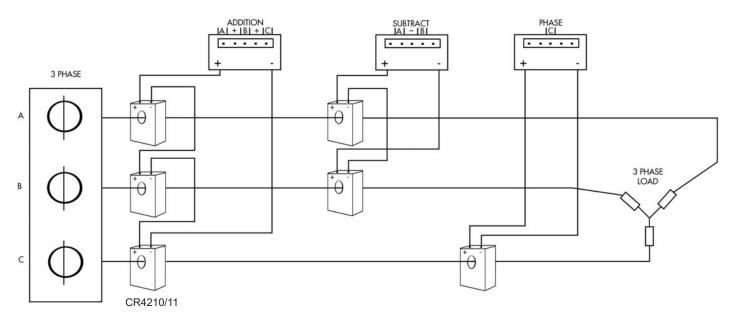
Many of the Analog Transducers from CR Magnetics provide a 4 to 20mA current loop to communicate sensed values. These loops can be converted to a voltage for input to a wide variety of instrumentation devices including panel meters, data acquisition systems, and programmable controllers. By adding a precision resistor in series with the loop, a voltage is developed, which can then be inputted to the instrumentation. In the diagram below, a current transducer is used to show this concept.



- The tolerance of the resistor is critical. Tolerances of the system are additive using a 0.5% percent transducer in conjunction with a 1% resistor results in a 1.5% tolerance system.
- The temperature coefficient of the resistor is a key factor. All electronic devices exhibit some variance with temperature. If the resistor has a large variance with temperature, the accuracy of the system will also vary with temperature. Self-heating of the resistor must also be considered. A typical design of 5VDC at full scale (20mA) requires a nominal resistance of 250 Ohms (5/.020). The power generated in this resistor at full scale is Volts times Amps or 5 X .020 = .100 Watts. Choosing a 1/8 Watt (.125) resistor will provide reasonable safety against destruction, but will cause a significant temperature rise in the resistor. This rise in temperature can result in significant changes in the value of the resistance. For instrumentation, a resistor with a power rating of at least 10 times the expected full scale power is recommended.
- The resistor should be mounted as close as possible to the instrumentation. Once the signal is converted from current to voltage, voltage drops from wire resistance introduces errors in the signal.
- Whenever possible, use similar materials for all wire connections. Galvanic reactions from dissimilar metals can introduce errors in the readings. An extremely low galvanic reaction such as 5mV introduces a .1% error at 5VDC full scale. Smaller reading levels results in this error being more significant.

Using the Self Powered CR4210/11 Series Current Transducer

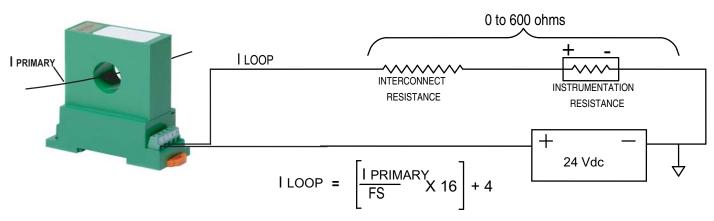
The 4210 and 4211 series transducers are self-powered variable voltage devices that automatically adjust their DC voltage output to maintain a DC voltage that is proportional to the Average RMS Value of the AC current flowing through the window of the transmitter. The 4210 outputs 5VDC and the 4211 outputs 10VDC for full scale AC input current.



- Verify that the correct polarity is observed as shown. The 4210/11 series are polarity protected, so damage should not occur if connected in reverse polarity.
- Insure that the total loop resistance (instrument plus wire) exceeds the minimum load resistance for the range chosen. Most commonly, an instrument with a burden of 1 Meg ohms is chosen. If the total loop resistance is less than required, the transducer will not function according to published specifications.
- Twisted pair wire should be adequate for most applications but shielded/twisted pair wire with the shield grounded at the instrumentation end may be required for the most severe environments. Refer to the instrumentation installation manual for more details regarding interconnect requirements.
- The output is calibrated to be proportional to the Average RMS of the current primary at 60 Hz. Signals from devices such as SCR and variable speed drives will not produce an accurate indication of RMS current levels.
- The first step in troubleshooting would be to check the voltage across all of the components in the loop.
- Transducers may be mounted in close proximity to each other without concern for magnetic interaction.
- An external current transformer may be attached to the transducer for applications that require monitoring current levels above 200 AAC.

Measuring 3-Phase Currents with the CR4210 Transducer

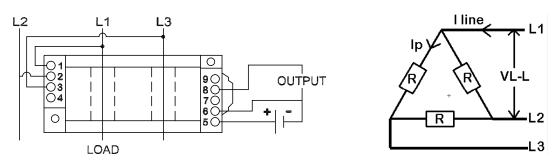
The unique design of the CR4210 Transducer allows the system designer to not only measure individual phase currents, but also combine signals to realize arithmetic functions with a minimum of components and programming. Because of the self-powered floating output feature, voltages can be added and subtracted by simple wiring, and accurate data displayed via programmable scale displays.



- Accurate average three phase current measurement
- Phase imbalance indication Monitor motor load status accurately and simply
- Monitor heater status and balance
- Phase Voltage monitor
- The transducer function of giving DC output voltages for AC input currents loses all phasing information. Absolute values of current are available only.
- Loading limits of the transducer remain as specified. Multiple transducers wired as shown must be capable of handling the instrument impedance on an individual basis.
- Transducers may be mounted in close proximity to each other without concern for magnetic interaction.
- An external current transformer may be attached to the transducer for applications that require monitoring current levels above 200 AAC.

Using the CR4220/60 Series Current Transmitter

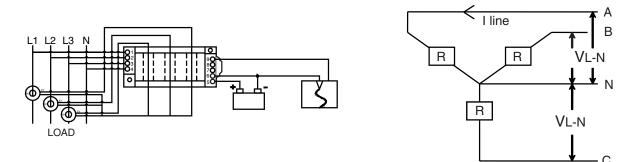
The 4220/60 series are variable resistance devices that automatically adjust their DC series resistance to maintain a DC current that is proportional to the Average RMS Value of the AC current flowing through the window of the transmitter. Since these are variable resistance devices, the 4-20mA loop must derive power from an external DC power supply.


- Verify that the correct polarity is observed as shown. The 4220/60 series are polarity protected, so damage should not occur if connected in reverse polarity.
- Insure that the total loop resistance (instrument plus wire) does not exceed 600 Ohms. Most commonly, an
 instrument with a burden of 250 Ohms is chosen. If the total loop resistance is greater that 600 Ohms the
 transducer will not function according to published specifications.
- Choosing connection wire with 22 gauge conductors or larger will minimize connection resistance on most applications. Twisted pair wire should be adequate for most applications but shielded/twisted pair wire with the shield grounded at the instrumentation end may be required for the most severe environments. Refer to the instrumentation installation manual for more details regarding interconnect requirements.
- Verify that the output of the DC supply is at least 24 VDC, with a current rating of 20 ma or greater per transmitter connected.
- The output is calibrated to be proportional to the Average RMS of the current primary at 60 Hz. Signals from devices such as SCR and variable speed drives will not produce an accurate indication of RMS current levels.
- Multiple loop powered transducers may be attached to the same power supply. Attach one side of the power supply common to all the transducers.
- The first step in troubleshooting would be to check the voltage across all of the components in the loop. At no load the voltage across the instrumentation will be its burden resistance times .004.
- Transducers may be mounted in close proximity to each other without concern for magnetic interaction.
- An external current transformer may be attached to the transducer for applications that require monitoring current levels above 400 AAC.

Η

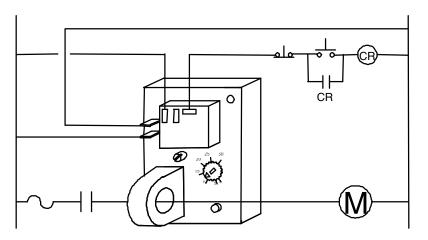
Active Power Measurement with the CR6230/40 Power Transducer

The CR6230 and CR6240 series of Power Transducers gives the designer a simple and effective way to measure and record the instantaneous power usage for 3 – phase 3 – wire loads. These devices are also known as 2 element power transducers. Only two current inputs are needed because 3 – wire power systems do not have a neutral return path, and one of the lines can always be modeled as the sum of the other two. Hence, these Delta connections can be measured with 2 current sense points.



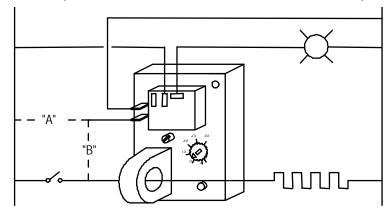
- Calculation of full scale output: Using a CR6230-500-5 for example, the unit is calibrated to output the fullscale reading when a balanced purely resistive load is being powered by 500 Vrms line to line, and the amount of current draw on each leg is 5 Arms. Power in any one leg will be the volts across the leg times the current through the leg times the power factor. For calibration, the value of the power factor is unity (1) for a purely resistive load. For the above diagram, the voltage across the element is V L-L, or 500Vrms. The current is Ip, which for balanced loads is I line divided by the square root of 3 (1.732). Thus, the power in one of the legs for a full scale reading using a 500-5 unit would be 500 X 5/1.732 = 1,443 Watts. There are then 3 legs on a 3-phase line, so the total power, full scale would be 3 X 1,445 = 4,330 Watts. Using this same methodology, the following simplified formula will give the full scale reading from any Delta transducer: Part number CR6230 AAA BB, Full scale in Watts = AAA X BB X 3 X 1.732.
- External current transformers and voltage transformers can be used to extend the reading range of any transducer. Voltage and current transformers are sized according to turns ratio. A turns ratio on a current transformer of 100:5 represents a turns ratio of 100/5 or 20. Thus for every 1 amp from the current transformer, this represents 20 Amps in the measured line. Since power = V X I X PF (power factor), the amount of power measured when using external current and voltage transformers will be V X I X PF X current ratio X voltage ratio. Using our same example as before, with a CR6230-500-5, if an external current transformer with a ratio of 20 is used, as well as an external voltage transformer with a ratio of 2, then the new full scale output of the transducer will equal 4,330 X 20 X 2 = 173,200 Watts!!! A simplified formula for this situation is: Full Scale Watts = AAA X BB X 3 X 1.732 X CT ratio X VT ratio. Please refer to "Selecting ANSI Class Metering Current Transformers" and "Using External Current Transformers to transformers to transformer to the revices.

Active Power Measurement with the CR6250/60 Power Transducer


The CR6250 and CR6260 series of Power Transducers gives the designer a simple and effective way to measure and record the instantaneous power usage for 3 – phase 4 – wire loads. These devices are also known as 3 element power transducers. All 3 current inputs are needed because 4 – wire power systems have a neutral return path, and differences in phase currents results in neutral currents, thus requiring all phase information. Hence, these Wye connections must be measured with 3 current sense points.

- Calculation of full scale output: Using a CR6250-500-5 for example, the unit is calibrated to output the fullscale reading when a balanced purely resistive load is being powered by 500 Vrms line to neutral, and the amount of current draw on each leg is 5 Arms. Power in any one leg will be the volts across the leg times the current through the leg times the power factor. For calibration, the value of the power factor is unity (1) for a purely resistive load. For the above diagram, the voltage across the element is V L-N, or 500Vrms. The current is Ip, which for balanced Wye loads flows through each element. Thus, the power in one of the legs for a full scale reading using a 500-5 unit would be 500 X 5 = 2,500 Watts. There are then 3 legs on a 3-phase line, so the total power, full scale would be 3 X 2,500 = 7,500 Watts. The 500-5 transducer will output fullscale (5VDC or 20mA) when the power being used is 7,500 Watts. Using this same methodology, the following simplified formula will give the full scale reading from any Wye transducer: Part number CR6250 AAA BB, Full scale in Watts = AAA X BB X 3.
- External current transformers and voltage transformers can be used to extend the reading range of any transducer. Voltage and current transformers are sized according to turns ratio. A turns ratio on a current transformer of 100:5 represents a turns ratio of 100/5 or 20. Thus for every 1 amp from the current transformer, this represents 20 Amps in the measured line. Since power = V X I X PF (power factor), the amount of power measured when using external current and voltage transformers will be V X I X PF X current ratio X voltage ratio. Using our same example as before, with a CR6250-500-5, if an external current transformer with a ratio of 20 is used, as well as an external voltage transformer with a ratio of 2, then the new full scale output of the transducer will equal 7,500 X 20 X 2 = 300,000 Watts!!! A simplified formula for this situation is: Full Scale Watts = AAA X BB X 3 X CT ratio X VT ratio. Please refer to "Selecting ANSI Class Metering Current Transformers" and "Using External Current Transformers with Other CR Devices" for more information on transformer ratios and applying external transformers to transducers and other devices.

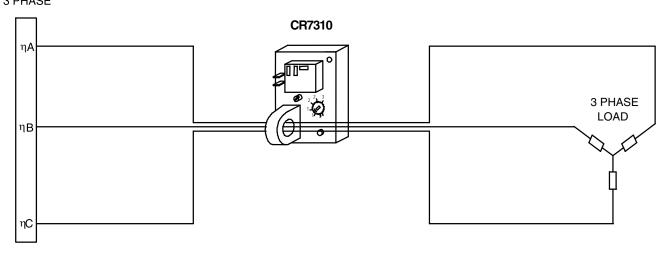
The CR4395 current sensing relay can be used as an effective way to monitor the operational load of a motor. Overloading and underloading can be sensed from primary current levels to trigger alarms, lockouts, and indicators. The EH version (active above setpoint current) can be used for overload, and the EL version (active below setpoint current) for underload.


- The CR4395 can be ordered with three time delay settings, A for .5 to 6 seconds, B for 2 to 20 seconds, and X for no delay. The EH option can utilize the time delay for preventing undesired activation during high motor startup currents.
- The time delay function can also be used for pulsed motor applications in the EL circuit. Here, activation of the relay will occur only if the current to the motor remains below the setpoint for longer than the delay period.
- Both the EH and the EL versions are available with the latching option. When tripped, the relay remains in the activated state until power is reset.
- The CR4395 comes standard with a mechanical relay that provides a Form C single pole contact. Other outputs such as transistor and triac switches are available as options. Typically, the mechanical relay is used to provide higher current switching for other motors and loads, and the solid state options are used to interface with digital and PLC circuitry, which eliminates switch bouncing.
- A combination of time delay setting and setpoint level can implement special indicator functions. Lower time delays, with properly chosen current trip levels can give an indication of motor bearing stress with the EH version. The EL version with longer delays and properly designed trip levels can be used for yield monitors in continuous process industries.
- The CR4395 is an effective tool in protecting and monitoring motors, however, electrical fuses or other devices may be required for complete circuit protection.

Н

Detecting Open Heaters and Lamps with the CR4395 Current Sense Relay

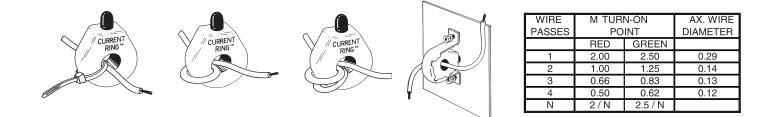
The CR4395 current sensing relay can be used as an effective way to monitor the operational status of heaters and lamps. Most loads of this type have an open circuit failure mode. The EL version (active below set-point)current can be utilized. Upon failure of the load, current ceases, and the relay activates.



- In cases where the current is cycled on and off, as in most heater applications, the connection scheme "B" can provide effective sensing. The CR4395 is powered by the controller output. Used in this fashion, the relay will only monitor the load when the load is active.
- The unique design of the CR4395 guarantees correct sensing of the load as the power is cycled on and off. Using tested power supply designs, the sensing circuitry and trip level are parametrically matched, eliminating false trips and timing problems.
- For continuously powered loads, circuit "A" is used. The output relay can then be used to drive alarms and indicators.
- The CR4395 comes standard with a mechanical relay that provides a Form C single pole contact. Other outputs such as transistor and triac switches are available as options. Typically, the mechanical relay is used to provide higher current switching for other motors and loads, and thesolid state options are used to interface with digital and PLC circuitry, which eliminates switch bouncing.
- A latching version is available that can be used to force reset when a trip occurs. The relay, once tripped, stays tripped regardless of current level sensed, until power is reset. This version is only applicable to circuit "A", since power is constantly set and reset in circuit "B".
- Time delay units can be selected for circuit "A" on ' some controlled heater applications. The time delay must be set longer than the longest "off" time for proper operation.
- Circuit "B" can only be used on controllers that are "zero-cross" or utilize full cycles of the ac power supply. Phase-fired SCR controls or devices that use portions of the power waveform to regulate power will not function properly.

3 Phase Imbalance/Ground Fault Detection Using the CR7310 Ground Fault Sensor

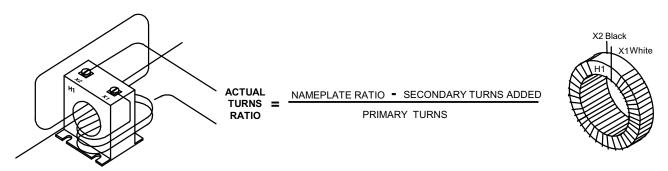
One of the most important applications of the CR7310 relay is to monitor 3 phase imbalances and ground faults. This application can help protect sensitive equipment and minimize losses from equipment failure. All three phases, plus neutrals as shown, are routed through the sensor window. 3 PHASE


- 3 Phase Y phase currents by definition must cancel when the loads are equal. Passing all three phases of the Y through the sensor will normally result in zero amperage reading. When an imbalance occurs, the phases do not cancel, and the relay trips.
- This type of imbalance scheme works best due to the fact that all fault conditions, leg to leg, leg to neutral, and leg to ground can be sensed. Sensing only neutral currents will not necessarily indicate a ground fault condition.
- Ground fault indication can only be sensed in a Delta configuration. Leg to leg imbalances are not detectable due to the absence of a neutral return path.
- The CR7310 comes standard with a mechanical relay that provides a Form C single pole contact. Other outputs such as transistor and triac switches are available as options. Typically, the mechanical relay is used to provide higher current switching for other motors and loads, and the solid state options are used to interface with digital and PLC circuitry, which eliminates switch bouncing.
- A latching version is available that can be used to force reset when a trip occurs. The relay, once tripped, stays tripped regardless of current level sensed, until power is reset.
- The CR7310 Ground Fault Sensor is in no way to be considered adequate protection from injury to operators, animals, or other electrically sensitive assets. These devices provide signals and indications that can be applied with other equipment for complete systems. Other fuses and/or electrical devices are required for complete circuit protection.

Н

The CR45 as an Open Heater/Open Winding Indicator

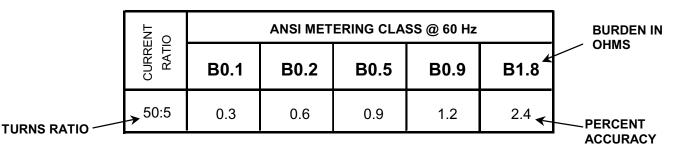
The most popular application of the CR45 indicator is to provide a method of non-intrusive troubleshooting and status indication of heater elements and motor windings. The typical failure mode of heaters and some motors are open circuit. When current flows, the LED is on. When the circuit is open, the LED is not on. This gives an easy method of monitoring the status of the equipment.



- The on level of the CR45 can be adjusted by increasing the number of primary turns. The table above gives the size wire and the number of turns that can be used. Dividing the normal one turn on level of 2 amps by the number of primary turns will give the adjusted turn on level.
- The CR45 is designed to be wire mounted using the wire tie provided. For panel mounting, the MB45 is available, along with a rubber grommet for sealing.
- The maximum current that the unit can handle is 100 Amps for a single turn. Using multiple primary turns decreases the maximum allowed by the same rules for adjusting the turn on point.
- For applications where the primary current cannot be routed to an easily viewed spot to use the CR45, please refer to our Remote Indicator line. These separate the LED and the ring sensor to give greater flexibility.
- Care must be taken when using the CR45 within heater environments. The maximum operating temperature of the unit is 70 degrees C.

Field Adjustment of Current Transformer Ratio

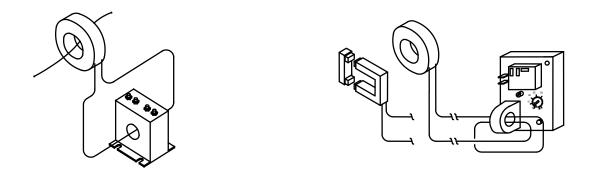
The ratio of current transformers can be field adjusted to fulfill the needs of the application. Passing more secondary turns or more primary turns through the window will increase or decrease the turns ratio.


- Increasing the number of primary turns can only decrease the turns ratio. A current transformer with a 50 to 5 turns ratio can be changed to a 25 to 5 turns ratio by passing the primary twice through the window.
- The turns ratio can be either increased or decreased by wrapping wire from the secondary through the window of the current transformer.
- When using the secondary of a current transformer to change the turns ratio, the right hand rule of magnetic fields comes into play. Wrapping the white lead or the X1 lead from the H1 side of the transformer through the window to the H2 side will decrease the turns ratio. Wrapping this wire from the H2 side to the H1 side will increase the turns ratio.
- Using the black or X2 lead as the adjustment method will do the opposite of the X1(white) lead. Wrapping from the H1 to the H2 side will increase the turns ratio, and wrapping from the H2 to the H1 side will decrease the turns ratio.
- Increasing the turns ratio with the secondary wire, turns on the secondary are essentially increased. A 50 to 5 current transformer will have a 55 to 5 ratio when adding a single secondary turn.
- Decreasing the turns ratio with the secondary wire, turns on the secondary are essentially decreased. A 50 to 5 current transformer will have a 45 to 5 ratio when adding a single secondary turn.
- Decreasing the turns ratio with the primary, accuracy and VA burden ratings are the same as the original configuration.
- Increasing the turns ratio with the secondary will improve the accuracy and burden rating.
- Decreasing the turns ratio with the secondary will worsen the accuracy and burden rating.

Н

Selecting ANSI Class Metering Current Transformers

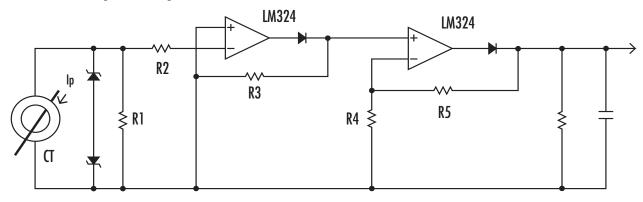
One of the most common uses of current transformers are in metering and power usage, where a 5 Amp secondary current transformer is applied to a panel meter or a power meter for displaying amperage or recording power. When extremely accurate measurement is required, or when revenue is generated from a power meter, ANSI class current transformers are generally selected. The following table describes the characteristics of the ANSI class transformer.


• The primary selection criteria is the burden placed on the secondary of the transformer. This is the impedance of the instrument that is connected to the transformer. This value is generally given in ohms or VA (volt-amps).

- For ANSI class transformers, the headings at the top of the table B0.1 through B1.8 organize the accuracy of the transformer according to the burden placed on the secondary. For example B0.1 means a burden of 0.1 ohms.
- The accuracies listed under the burden values are given in percent. These values are for a full scale reading. Percent accuracy means that the reading received from the transformer at the burden listed will be within the percentage given of ideal. Hence, a 50 to 5 turns ratio transformer with 50 Amps through the window will output 5 amps +/- 0.3% in the secondary into a 0.1 ohm burden. The current in the secondary will be some where between 4.985 and 5.015 amps.
- When the instrument connected gives the burden to the transformer in VA (volt-amps) the table can be used to determine accuracy. Since the transformer has a 5 amp secondary, using Ohm's Law, the impedance can be determined. A burden of 5 VA must be equal to the current squared times the impedance in ohms. Thus, 5VA / (5X5) = 0.2 Ohms. Thus, the accuracy of this transformer-meter system would be 0.6%.
- If the impedance calculated or chosen falls between headings, use interpolation to determine accuracy.
- In general, the lower the burden, the higher the accuracy.
- It is critical to understand that the accuracy ratings are for a full scale reading. This accuracy will only be maintained from 20% full scale and up. Below this, and the accuracy worsens greatly. Always strive to select transformers so that the majority of readings will be within the 20 to 100% full scale range.

Using External Current Transformers with Other CR Devices

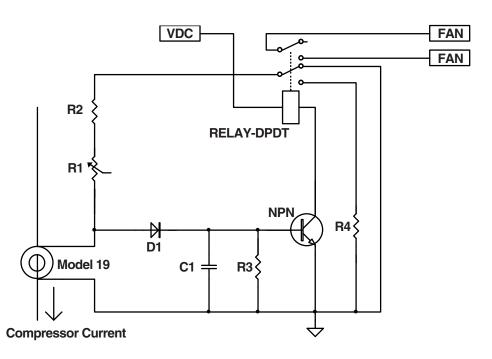
Many times, the application requirements do not allow using a single sensor such as a transducer or current sensing relay. The level of the current sensed may be too great, the size of the conductor may be too large, or the location of the sensor may not allow the placement of the transducer. In these cases, a two piece solution can be used, with a remote or external transformer chosen for capacity, size, or location, and a transducer or current sensing relay for input or control.


- Typically, a standard 5 amp secondary current transformer is selected. These transformers integrate easily with the 5 amp input transducers, transmitters and relays.
- The accuracies listed under the burden values are given in percent. These values are for a full scale reading. Percent accuracy means that the reading received from the transformer at the burden listed will be within the percentage given of ideal. Hence, a 50 to 5 turns ratio transformer with 50 Amps through the window will output 5 amps +/- 0.3% in the secondary into a 0.1 ohm burden. The current in the secondary will be somewhere between 4.985 and 5.015 amps.
- When the instrument connected gives the burden to the transformer in VA (volt-amps) the table can be used to determine accuracy. Since the transformer has a 5 amp secondary, using Ohm's Law, the impedance can be determined. A burden of 5 VA must be equal to the current squared times the impedance in ohms. Thus, 5VA / (5X5) = 0.2 Ohms. The accuracy of this transformer-meter system would be 0.6%.
- If the impedance calculated or chosen falls between headings, use interpolation to determine accuracy.
- In general, the lower the burden, the higher the accuracy.
- It is critical to understand that the accuracy ratings are for a full scale reading. This accuracy will only be maintained from 10% full scale and up. Below this, and the accuracy worsens greatly. Always strive to select transformers so that the majority of readings will be within the 10 to 100% full scale range.

Н

Precision Rectifier Circuit for CT Signal Conditioning

Many times, the designer wishes to generate a DC signal from an AC current transformer for input to a PLC or data acquisition system, or even as part of a current or motor controller. Creating DC from an AC source creates problems with diode voltage drops and the variances over temperature and current. The following circuit provides an accurate method for creating this DC signal.



- The CT secondary current is applied to the resistor R1, which generates a voltage equal to the primary current divided by the turns ratio and multiplied by the value of R1. This AC voltage is rectified by the first op amp, and then amplified by the second op amp.
- The gain of the first stage is always kept at 1 or unity (R2 = R3) to guarantee symmetry of the rectified waveform. R2 should be chosen at least 10 times greater than R1 for proper accuracy.
- The gain of the second stage is R5/R4 + 1. This gain is chosen to get the desired output DC voltage for the designed input voltage.
- The main advantage of this circuit is the removal of the diode drop as a variance in the signal. DC can be generated directly from R1 by applying the AC voltage to a diode bridge. However, the AC voltage required to do this must be greater than 2 diode voltage drops, or over 2 VAC. This limits the designer to use a silicon steel core that can generate enough voltage before going into saturation. By using the above circuit, the AC voltage input can be very low (10-100 mV) and then amplified to the level desired. This then allows the designer to choose smaller core devices and nickel core devices which saturate at low voltages. Accuracy and cost are both improved.
- Use standard op amp design guidelines when setting up this circuit. Keep resistors at 1 M ohm or less, and keep gains to 100 or less.
- The output must be filtered for pure DC. The RC output network shown should be designed with a time constant at least 10 times greater than the period of the waveform sensed. For 60 Hertz, use a time constant of 1/6. For 400 Hz, use a time constant of 1/40, minimum.

Low Cost Fan Control with Hysteresis

This application can be used to control many different devices. In this example, a compressor current is sensed, and when it reaches a selected set point, the circuit turns on a relay, which controls a fan motor. The circuit is generated with a minimum number of parts, and includes hysteresis.

- The CT secondary current is applied to the resistors R1 and R2, which generates an AC voltage that is half wave rectified by D1, and then turns on the NPN transistor. The transistor then turns on the DPDT relay, which energizes the fan motor with one pole of the relay. The other pole of the relay is used to insert R4 into the series R1 and R2 resistance. This immediately raises the voltage at the anode of D1, thus creating the necessary hysteresis.
- C1 provides energy storage to keep the transistor in the on state during half wave inputs. R3 discharges C1 to aid in turn off.
- The transistor should be selected keeping in mind the current gain factor, Hfe, and the turn on voltage, Vbe.
- This should be weighed against the amount of secondary current received from the Model 19. Typically, a Darlington transistor is chosen for the appropriate gain.
- This design can also be applied using a bilateral silicon switch, instead of the relay shown. The transistor activation can be used to turn on two bilateral switches, one to control a motor, and the other to provide the hysteresis.

Technical Terms

Accuracy	The degree of uncertainty with which a measured value agrees with the ideal values. Accuracy class of								
	instrument transformers are defined by the requirements of ANSI standard number C57.13. Standard								
	metering accuracy classes are 0.3, 0.6 and 1.2.								
Ambient Temp	Temperature of the surrounding air.								
Apparent Power	The product of the applied voltage and current in ac circuit. Apparent power, or volt-amps, is not the true								
	power of the circuit since power factor is not considered in the calculation.								
Auxiliary Power	A power source, other than that producing the measured input quantity, which supplies the power necessary								
	for the correct operation of the transducer.								
Average RMS Responding	The measurement of an AC voltage or current obtained using a DC instrument with a rectifying input circuit								
	that converts AC energy to DC. The meter scale or readout is usually calibrated in terms of the corresponding								
	RMS values, but is accurate only for pure sinewave inputs.								
Burden	In current or potential transformers burden in VA is the maximum load the transformer can support while								
	operating within its accuracy rating.								
Calibration	Adjustment of a transducer so the output is within a specified range for particular values of the input.								
Current Transformer	An instrument transformer used to accurately scale ac currents up or down, or to provide isolation. Generally								
	used to scale large primary or bus currents to usable values for measuring (or control) purposes. The current								
	measurement range is expressed as the ratio of full scale primary current to full scale secondary current. The								
	primary winding is connected in series with the conductor carrying the current to be measured or controlled.								
	There are two classification of current transformers. Window type and Wound Primary type. In Window type								
	current transformers the primary winding is provided by the line conductor and is not an integral part of the								
	transformer. In Wound Primary type the primary winding is an integral part of the transformers and usually								
	consist of more that one turn. Wound Primary transformers are used in applications that require very high								
•	accuracies or where high voltage isolation is required.								
Delay on Energization	A term describing a mode of operation relative to timing devices. Delay begins when the initiate switch is								
	closed, or on application of power to the input. Same as Delay on Make.								
Delay on Make	Same as delay on energization.								
,									

Technical	Terms	(cont.)
-----------	-------	---------

Effective Power	In ac measurements, effective power (measured in watts) equals the product of voltage, current and power					
	factor (the cosine of the phase angle between the current and the voltage).					
Full Scale (F.S.)	The specified maximum value of the input quantity being measured that can be applied to a transducer with					
	out causing a change in performance beyond specified tolerance.					
Full Scale Output	The specified maximum output value for which the stated accuracy condition applies.					
Guaranteed Range	Refers to a range of adjustment or operating range whereby the control device must at least operate or					
	cover the "guaranteed" range.					
Hysterisis	An error resulting from the inability of an electrical signal or mechanical system to produce identical readings					
	or position when approached slowly from either direction. Also referred to as deadband.					
Impedance	The opposition in an electrical circuit to the flow of alternating (AC) current. Impedance consists of ohmic					
	resistance (R), inductive reactance (X_L), and capacitive reactance (X_C).					
Inrush	The initial surge of current through a load when power is first applied. Lamp loads, induction motors,					
	solenoids, contactors, valves, and capacitive loads all have inrush currents higher than the normal running or					
	steady state currents. Resistive loads, such as heater elements, have no inrush.					
Instrument Transformer	A transformer which is intended to reproduce in its secondary circuit, in a definite and known proportion, the					
	current or voltage of its primary circuit with the phase relations substantially preserved.					
Isolation	To be electrically separate. A measure of the strength of the dielectric providing the electrical division or					
	separation.					
Linearity	A measure of departure from straight-line response in the relationship of two quantities, where the change in					
	one is directly proportional to a change in the other. Normally expressed as a maximum percentage.					
Loop Powered	The transducer uses the power supplied to the output current measuring loop. No auxiliary power supply is					
	required.					
Loop Resistance	The electrical resistance, in ohms, of a complete transducer circuit exclusive of an instrument's internal					
	resistance.					
Non-Linearity	In an ideal system, the input-output relationship between variables is linear(i.e. straight line) Any departure					
	from straight line is expressed as non-linearity.					

Technical Terms

Technical Terms (cont.)

Operating Voltage	A nominal voltage with a specified tolerance applied. The design voltage range to remain within the unit's								
	operating tolerances.								
Phase Angle	The difference in time by which an alternating signal lags or leads another signal. Phase angle may be a								
	measure of power factor when used to indicate the relationship of a voltage to current signal for a non-resistiv								
	load. Phase angle may also be used to measure the different in phase between the primary and secondary of								
	current or voltage transformer.								
Polyphase Wattmeter A wattmeter consisting of 2 or 3 single phase wattmeters mounted in the same package. The same package of 2 or 3 single phase wattmeters mounted in the same package.									
	elements can be electronic transducers. A dual element wattmeter will measure power in a 3 phase system								
	regardless of power factor, voltage or current variations between phases. Most common types are 2,2 $1/2$ or 3								
	element forms. In 4 wire circuits, with the 4th wire carrying current, the 2« or 3 element type is used. If								
	there is voltage imbalance, only the 3 element units can be employed.								
Power	A source or means of supplying energy. The unit of measurement is the watt. 1 Horsepower is equal to								
	745.7 Watts.								
Range	Nominal operating limits, specified by the lowest calibration point to the highest calibration point.								
Rated Output	The output at standard calibration								
Ratios	The relationship between the primary input value divided by the secondary output value. For example: a								
	current transformer that has a primary input value of 100 Amps and a secondary value of 5 Amps will have a								
	Current Ratio of 100:5 and a Turns Ratio of 20:1. It is important to use the term Current Ratio for most appli								
	tions because it defines the current handling capacity of wire used in the secondary winding. The								
	Turns Ratio only refers to the winding ratio and does not define the current handling capacity of the either								
	primary or secondary windings.								
Real Power	Same as Effective Power.								
Reactive Power	A component of apparent power (volt-amps) which does not produce any real power (watt) transfer.								
Repeat Accuracy	The maximum deviation from one timing operation to the next.								
Self Powered	The power required for correct operation of a transducer is supplied via the line being measured.								
Separately Powered	The power required for correct operation of a transducer is supplied via an external or auxiliary power								
	source, rather than via the line being measured.								

Technical Terms (cont.)

Setting Accuracy	The ability to accurately set a knob, switch, or other adjustment to the time delay, or other monitored parameter.						
Snubber Network	A form of suppression network which consists of a series connected resistor and capacitor connected in						
	parallel with the output device. Helps to limit the maximum rate of rise of a voltage. Used to prevent false						
	turn-on of solid state outputs.						
Snubber	A resistance/capacitor or diode/resistor circuit used to dissipate transient energy peaks.						
Transducer	A device for converting an electrical signal into a useable direct current or voltage for measurement purposes.						
RMS	The effective value of alternating current or voltage. The RMS value equates an AC signal to a DC signal which						
	provides the same power transfer.						
True RMS Amps	The effective value of an AC signal. For an amp signal, true RMS is a precise method of stating the amp value						
	regardless of waveform distortion. An AC measurement which is equal in power transfer to a corresponding DC						
	current.						
True RMS Volts	The effective value of an AC signal. For a voltage signal, true RMS is a precise method of stating the voltage						
	value regardless of waveform distortion. An AC measurement which is equal in power transfer to a						
	corresponding DC voltage.						
Unbalanced Loads	Refers to an unequal loading of the phases in a 3 phase system (current and/or phase angle).						
Watt	Unit of electrical power. WATTS=E*I*PF						
VA	The product of the RMS voltage applied to a circuit and the RMS current, in amperes, flowing through it.						
VAR(Volt-Amperes Reactive)	The unit of reactive power as opposed to real power(watts).						

Calculating Ratio Errors

UNDERSTANDING CURRENT TRANSFORMER RATIO ERROR AND EXCITATION CURVES

A current transformer follows all the standard physical laws for electrical transformers. The primary winding is usually a very low impedance and therefore treated as a "brute force" constant current source. Faraday's law of ampere-turn balance states that the number of turns in the primary winding times the primary current must equal the number of turns in the secondary winding times the secondary current. Therefore, since the primary is a constant current source, the secondary becomes a constant current source proportional only to the turns ratio.

Other factors come in to play that affect the basic Faraday's relationship, such as the non-linear properties of the core material, eddy current, hysteresis and IR losses. As Figure 1 illustrates, the eddy current and hysteresis losses act to shunt current across the transformer secondary and are defined as excitation losses I_E . Since the excitation losses are non-linear, they are determined from an Excitation Curve provided by the transformer's manufacturer. The I_R losses act as a resistance R_S in series with the secondary winding.

As Figure 2 illustrates, the secondary voltage E_s is found on the vertical axis and the secondary exciting current I_E can be found on the horizontal axis. This exciting current can best be described as the current that contributes to the current transformation ratio error.

Power transformers use the terms "Load" and "Regulation" to describe their operation. Current transformers use the terms "Burden" and "Accuracy" respectively to describe similar functions. Burden defines the connection made to the secondary winding to differentiate it from the primary connection that is generally described as the Load. Current transformers use the term Accuracy to describe what would generally be considered Regulation with a power transformer. It is important to remember that Burden and Accuracy are interdependent; generally the lower the Burden resistance, the better the Accuracy.

Designs that have the current transformer separate from the instrumentation resistor R_I need to consider transformer ratio error. An example would be an ampere meter that uses an external current transformer. The transformer must have an accurately-defined current ratio to allow for interchangeability with other transformers of the same rating.

Designs that have the current transformer as an integral part of the instrumentation can place less emphasis on ratio error and consider more on the transformer's linearity. An example would be a printed circuit-board-mounted current transformer that inputs into an operational amplifier circuit. Ratio error can generally be minimized during calibration with adjustment to the offset and gain controls. The major concern to the overall accuracy of the design would then be linearity of the transformer through out the operating range.

In practice, the designer must consider various factors in selecting a current transformer: since the secondary is operating as a constant current source, a Burden resistor of lower value will provide improved accuracy but decrease instrumentation voltage (V=IR). As the

instrumentation voltage is increased with a high Burden resistor, the power dissipated may become a factor ($P = I^2 R$). Generally the designer determines the lowest voltage the electronics can handle considering such parameters as circuit noise and gains. Then the value of the burden resistor can be determined, knowing the characteristics of the current transformer and overall design requirements.

UNDERSTANDING CURRENT TRANSFORMER RATIO ERROR AND EXCITATION CURVES

An example of calculating the actual secondary current, instrumentation voltage and error percentage is as follows:

Determine the total burden terminal resistance R_B across the secondary of the current transformer. This includes the secondary instrumentation resistance R₁ and any resistance in the interconnecting leads RL.

For: $R_I = 0.02$ ohm & $R_I = 0.01$ ohm $R_B = .02 + .01 = .03$ ohm

Add the total burden resistance to the secondary winding DC resistance Rs. From figure 2 for a 200:5 current ratio transformer:

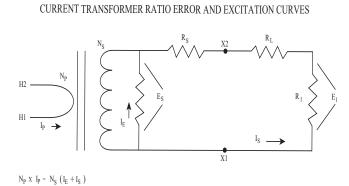
 $R_{S} = 0.034 \text{ ohms.} 03 + 0.034 = .064 \text{ ohms}$

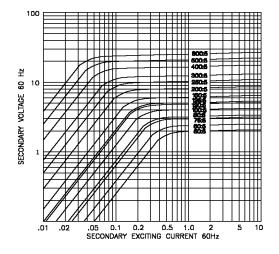
Select a value of secondary current at a point you desire to determine the ratio error

For:
$$I_{S} = 3.75 \text{ A}$$

Calculate the secondary voltage E_{S} required for the current to flow through the total secondary resistance.

$$E_S = I_S \times R E_S = 3.75 \times 0.064 = .24 V$$


Find the secondary voltage E_S on the vertical scale of the excitation curve and read over to the 200 line and down to the horizontal scale for the secondary exciting current I_F .


 $I_{F} = .013 \text{ A}$

The primary current will be the turns ratio times the sum of the exciting current and the secondary current $I_P = N_S / N_P \times (I_F + I_S)$. $I_P = 40 \times (.013 + 3.75) = 150.52 \text{ A7}$.

The voltage developed across the instrumentation resistor will be the secondary current times the instrumentation resistor $E_I = I_S \times R_I \cdot E_I = 3.75 \times .02 = 0.075 \text{ V}$

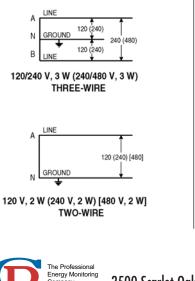
To calculate the percentage ratio error, divide the exciting current by the secondary current times 100. $I_F / I_S \ge 100.013 / 3.75 \ge 100 = 0.35 \%$

 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119

 Web: http://www.crmagnetics.com
 153
 E-mail: sales@crmagnetics.com

Н

AC Motor Loads & Standard Voltages


	MOTOR FULL LOAD CURRENTS									MAXIMUM LOCKED ROTOR CURRENTS						
	SINC PHA		3-PHASE A.C. INDUCTION						3-PHASE A.C. INDUCTION							
HP	115 V	230 V	115 V	200 V	230 V	460 V	575 V	2300 V	4160 V	200 V	220/230 V	440/460 V	550/575 V	2300 V	4160 V	
1/2	9.8	4.9	4	2.3	2	1	.8			23	20	10	8			
3/4	13.8	6.9	5.6	3.2	2.8	1.4	1.1			29	25	12.5	10			
1	16	8	7.2	4.15	3.6	1.8	1.4			34.5	30	15	12			
11/2	20	10	10.4	6	5.2	2.6	2.1			46	40	20	16			
2	24	12	13.6	7.8	6.8	3.4	2.7			57.5	50	25	20			
3	34	17		11	9.6	4.8	3.9			73.5	64	32	25			
5	56	28		17.5	15.2	7.6	6.1			106	92	46	37			
71/2	80	40		25	22	11	9			146	127	63	51			
10	100	50		32	28	14	11			186	162	81	65			
15				48	42	21	17			267	232	116	93			
20				62	54	27	22			334	290	145	116			
25				78	68	34	27			420	365	182	146	35	19	
30				92	80	40	32			500	435	217	174	41	23	
40				120	104	52	41			667	580	290	232	55	30	
50				150	130	65	52			834	725	362	290	69	38	
60				177	154	77	62	16	8.9	1000	870	435	348	83	46	
75				221	192	96	77	20	11	1250	1085	592	435	104	57	
100				285	248	124	99	26	14.4	1670	1450	725	580	139	76	
125				358	312	156	125	31	17	2085	1815	907	726	173	96	
150				415	360	180	144	37	20.5	2500	2170	1085	870	208	115	
200				550	480	240	192	49	27	3340	2900	1450	1160	278	153	
OVER 200HP APPROX																
AMPS/H				2.75	2.40	1.20	.96	.24	.133							

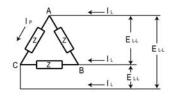
AC MOTOR LOAD CHART

*This information provided as reference only. Consult motor manufacturer and related standards for additional information.

U.S. Standard Voltages

SINGLE-PHASE

POLYPHASE 240 (480) 208 (416) 120 (240) [480] 120 (240) [480] 120 (240) 240 (480) 120 (240) [480] 120 (240) 120 V, 3 W (240 V, 3 W) [480 V, 3 W] 240/120 V, 4 W (480/240 V, 4 W) THREE ELEMENT, THREE-WIRE THREE ELEMENT, FOUR-WIRE DELTA 208 (480) 120 (277) 208 (480) 120 (277) 208 (480) 120 (277) С 208Y/120 V, 4 W (480Y/277 V, 4 W) THREE ELEMENT, FOUR-WIRE WYE

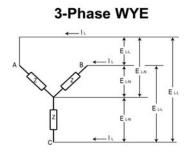


 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119

 Web: http://www.crmagnetics.com
 154
 E-mail: sales@crmagnetics.com

3 Phase Balanced Loads

3-Phase Delta

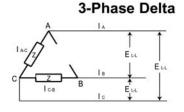

P=1.73 EL-L IP cos
$$\theta = \frac{3(E_{L-L})^2}{Z}$$

$$Z = \frac{1.73 \text{ E}_{L-L}}{I_L}$$
$$I_P = \frac{I_L}{1.73}$$

• The current in each element is equal to the line current h divided by $-\overline{3.}$

- The voltage across each element is equal to the line voltage E_{L4} .
- \bullet The impedance of each element is equal to $\cdot\overline{3}$ times the voltage across each element divided by the line current.
- The voltage across the elements are 120Þ out of phase.
- The currents in the elements are 120b out of phase.
- The power is equal to -3 times voltage across each element times the current *l*, times COS Θ.

P = power in watts Θ = phase angle in degrees


 $P = 3 E_{L-N} I_L \cos \theta = 1.73 E_{L-L} I_L \cos \theta$

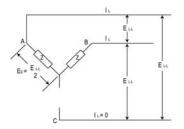
$$I_{L} = \frac{E_{L-N}}{Z} = \frac{E_{L-L}}{1.73 Z}$$

$$E_{L-N} = \frac{E_{L-L}}{1.73} \qquad Z = \frac{E_{L-L}}{1.73 P}$$

- The current in each element is equal to the line current I.
- The voltage across each element E_{LM} is equal to the line voltage E_{L} divided by $\overline{3.}$
- The impedance of each element is equal to line voltage $E_{\rm sc}$ divided by -3 times the line current.
- The voltages across the elements are 120P out of phase.
- The currents in the elements are 120Þ out of phase.
- The power is equal to 3 times line voltage $E_{\rm LM}$ times line current times COS $\Theta.$
- For a ballanced load the current in the neutral is equal to zero.

3 Phase Unbalanced Loads

$$P = \frac{2(E_{L-L})^2}{Z}$$


$$I_{A-C} = I_{C-B} = I_A = I_B = \frac{E_{L-L}}{Z}$$

Ic = 1.73 IA = 1.73 IB

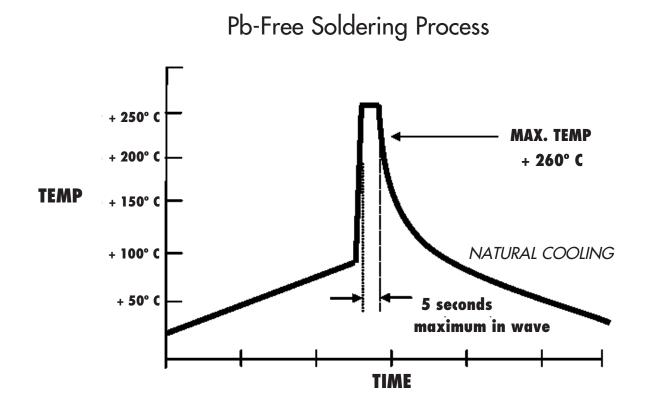
The current in each non-open element is equal.

- The current in the connecting leg of the non-open elements is $\overline{\mathbf{-3}}$ times the current in any other leg.

3-Phase WYE (No neutral)

$\mathsf{P=E_{L-L} I_L \ COS \ \theta}$

$$L = \frac{E_{L-L}}{2 Z}$$


• The current in each non-open element is equal to the line current.

- The voltage across each non-open element is equal to the line voltage divided by 2.
- The power is equal to the line voltage times the line current times COS $\Theta.$

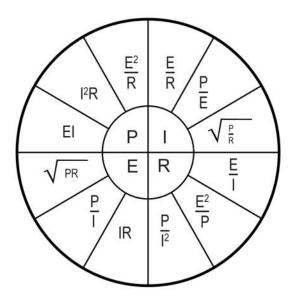
3500 Scarlet Oak Blvd. St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119 Web: http://www.crmagnetics.com 155 E-mail: sales@crmagnetics.com

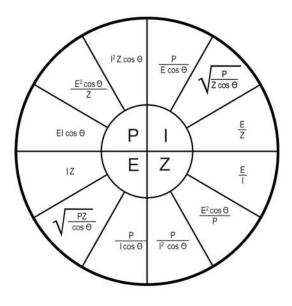
Products: CR8300 Series PCB Mount Current Transformers

The above flow-wave soldering profile applies to all CR8300 and Custom CR8400 PCB Mount Current transformers.

The temperatures shown above, reflect the conditions seen by the component lead wires

Exposure of the <u>component body</u> to excessive heat during curing, preheat and soldering operations, may result in damage to the component.


It is recommended that leaded components be installed <u>after</u> relow soldering of surface mount components is completed.


Η

Ohm's Law

DC Systems

AC Systems

 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119

 Web: http://www.crmagnetics.com
 157
 E-mail: sales@crmagnetics.com

Text References

F.B. Silsbee A Shielded Resistor for Voltage Transformer Testing U.S. Bureau of Standards Scientific Papers, Vol.20, 1926 pp.489-514 A.L. Brownlee A Primary Method of Measuring the Ratio and Phase Angle of Current Transformers AIEE Transactions, Vol. 69, part 1, 1950, pp. 459-460 S.D. Moreton A Simple Method for the Determination of Bushing-Current-Transformer Characteristics AIEE Transactions, Vol. 62, 1943, pp. 581-585 O. A. Petersons A Self-Balancing High-Voltage Capacitance Bridge IEEE Transactions on Instrumentation and Measurement, Vol. IM-13, NO 4, Dec 1964, pp. 216-224 **O.** Petersons A Self-Balancing Current Comparator IEEE Transactions on Instrumentation and Measurement, Vol. IM-15, nos 1 and 2, Mar/Jun 1966, pp. 62-71 G. Camilli and R.L.Ten Broeck A Proposed Method for the Determination of Current Transformer Errors AIEE Transactions, Vol.59, 1940, pp.547-550 T.M. Souders A Wide Range Current Comparator System for Calibrating Current Transformers IEEE Transactions on Power Apparatus and Systems, Vol. PAS-90, no 1, Jan/Feb 1971, pp. 318-323 J.J. Park Accuracy of High-Range Current Transformers U.S. Bureau of Standards Journal of Research, Vol.14,1935, pp. 367-392 J.P. Gebelein and J.A. Elzi Analysis of Bushing-Current-Transformer Performance AIEE Transactions, Vol.59, 1940, pp.541-546 Applied Protective Relaying Newark, N.J. Westinghouse Electric Corporation, 1976 C.R. Mason Art and Science of Protective Relaying New York: John Wiley and Sons, Inc., 1956 F.S. Rothe and C. Concordia Characteristics of Current Transformers During Faults, Part II AIEE Transactions, Vol.66,1947,pp.731-734

A.T.Sinks Computation of Accuracy of Current Transformers AIEE Transactions, Vol.59, 1940, pp.663-668 H.S. Shott and H. A. Peterson Criteria for Neutral Stability of Wye-Grounded-Primary Broken-Delta Secondary Transformer Circuits AIEE Transaction, Vol.60,1941, pp.997-1002

L. J. Powell Current Transformer Burden and Saturation I&CPS Conference Record, 1977

Arthur Wright Current Transformers London: Chapman and Hall, Ltd., 1968

E.C.Wentz and W.K. Sonnemann Current Transformers and Relays for High Speed Differential Protection, With Particular Reference to Offset Transient Currents AIEE Transactions, Vol.59,1940, pp.481-488

D.J. West Current Transformer Application Guidelines 1977 I&CPS Conference Record

Arthur Wright Current Transformers (book) Chapman and Hall, Ltd., London 1968

A.H.M. Arnold Current-Transformer Testing Journal of the IEE, vol. 74, 1934, pp. 424-444

F.W.Peek, Jr. Dielectric Phenomena in High Voltage Engineering; 3rd ed. New York, McGraw-Hill Book Company, Inc. 1929

Theodore Wildi Electrical Machines, Drives, and Power Systems (2nd Edition) Prentice Hall, 1991,1981 by Sperika Enterprises Ltd.

Vincent Del Toro Electromechanical Devices for Energy Conversion and Control Systems New Jersey: Prentice-Hall, Inc., 1968

Reuben Lee, Leo Wilson, Charles E. Carter Electronic Transformers and Circuits (3rd Edition) John Wiley & Sons, A Wiley-Interscience Publication

F.B. Silsbee, R.L. Smith, N.L. Forman, and J.H. Park Equipment for Testing Current Transformers U.S. Bureau of Standards Journal of Research, Vol. 11, Jul 1933, pp. 93-122

E.G. Reed Essentials of Transformer Practice New York, D.Van Nostrand Company, Inc. 1927

 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119

 Web: http://www.crmagnetics.com
 158
 E-mail: sales@crmagnetics.com

Text References

I.F. Kinnard Functional Analysis of Measurements AIEE Transactions, Vol.60,1946,pp.987-992

William M. Flanagan Handbook of Transformer Design and Applications (2nd Edition) McGraw-Hill, Inc.

C.L. Schuck How to Fuse Potential Transformer Primary Circuits General Electric Review, July 1941, pp.385-389

F.R.D'Entremont How to Use Certificate Test Values to Determine Complete Potential Transformer Accuracy Characteristics Transmission and Distribution, Dec.,1951

ANSI/IEEE C57.13-1978 IEEE Standard Requirements for Instrument Transformers

B. Hague Instrument Transformers London, Sir Isaac Pitman and Sons, Ltd., 1936

F.K. Harris, W.C. SZE, N.L. Kusters, O. Petersons, and W.J.M. Moore An International Comparison of Voltage-Transformer Calibrations to 350 kV. IEEE Transactions on Communication and Electronics, Vol. 83, Jan 1964, pp. 13-19

L.F. Kennedy and A.T. Sinks New Current Transformer for Bus Differential Protection AIEE Transactions, Vol.60,1941, pp.1180-1187

G.Camilli New Developments in Potential Transformer Design AIEE Transactions, Vol. 62,1943, pp.483-487

C.A. Woods, Jr. and S.A. Bottonari Overcurrent Performance of Bushing Type Current Transformers AIEE Transactions, Vol.59, 1940, pp.554-560

Eric Lowdon Practical Transformer Design Hankbook (2nd Edition) Tab Professional and Reference Books, Blue Ridge Summit, PA

F.B. Silsbee Precautions Against Stray Magnetic Fields in Measurements with Large Alternating Currents AIEE Transactions, Vol. 48, Oct 1929, pp. 1301-1306

A.H.M. Arnold Precision Testing of Current Transformers Journal of the IEE, Vol. 68, 1930, pp. 898-905

C.T. Weller Relative Accuracy of Three-phase Metering Combination AIEE Transactions, Vol. 60,1941,pp.925-929 Westinghouse Electric Corporation Relay-Instrument Division Applied Protective Relaying Newark, New Jersey, 1976

R.G. Bruce and A. Wright Remanent Flux in Current Transformer Cores Proceedings, IEE, Vol.113, No.5, May 1966,p.915

ANSI Standard C57.13-1968 Requirements for Instrument Transformers American National Standards Institute

American National Standards Institute Requirements for Instrument Transformers ANSI Standard C57.13-1968

Instrument Transformer Burden Data. Schenectady, NY: General Electric Company, GET-1725,1961

Manual of Instrument Transformers Schenectady, NY: General Electric Company, GET-97, 1975.

L.F. Hunt and J. H. Vivian Sensitive Ground Protection for Radial Distribution Feeders AIEE Transactions, Vol.59,1940,pp.84-90

H.C. Barnes and A.J. McConnell Some Utility Ground Relay Problems AIEE Transactions Vol., 74,1955,p.417

C.M.Foust and N. Rohats Some Recent Developments in Impulse Voltage Testing AIEE Transactions, Vol. 59, 1940, pp.257-265

D.G.Fink and H.W. Beaty Standard Handbook for Electrical Engineers New York: McGraw-Hill, 1978

R. A. Pfuntner The Accuracy of Current Transformers Adjacent to High-Current Buses AIEE Transactions, Vol. 70, part 11, 1951, pp. 1656-1662

N.L. Kusters The Precise Measurement of Current Ratios IEEE Transactions on Instrumentation and Measurement, Vol. IM-13, Dec 1964, pp. 197-209

N.L. Kusters, and W.J.M. Moore The Compensated Current Comparator; A New Reference Standard for Current-Transformer Calibrations inIndustry IEEE Transactions on Instrumentation and Measurement, Vol. IM-13, Jun/Sept 1964, pp.107-114

3500 Scarlet Oak Blvd.St. Louis MOUSA63122V: 636-343-8518F: 636-343-5119Web: http://www.crmagnetics.com159E-mail: sales@crmagnetics.com

Text References

P.N. Miljanic, N.L. Kusters, and W.J.M. Moore The Application of Current Comparators to the Calibration of Current Transformers at Ratios up to 36 000/5 Amperes IEEE Transactions on Instrumentation and Measurement, Vol. IM-17, Sept 1968, pp. 196-203

R. Davis The Design and Construction of a Shielded Resistor for High Voltages Journal of the IEE, Vol.69,1931, pp. 1028-1034

C.R. Mason The Art and Science of Protective Relaying New York:Wiley 1956

Hal Gibson The Effect on Accuracy of the Location of Conductors in a Window-type Current Transformer Industrial Power Systems Magazine, Vol.11 No.1, March 1968

W.K. Clothier and L. Medina The Absolute Calibration of Voltage Transformers Proceedings of the IEE, Vol. 104A, Jun 1957, pp. 204-214

N.L. Kusters, and O.A. Petersons Transformer-Ratio-Arm Bridge for High-Voltage Capacitance Measurements IEEE Transactions on Communications and Electronics, No. 69, Nov 1963, pp. 606-611

IEEE Power Engineering Society Transient Response of Current Transformers IEEE 76CH1130-4 PWR, January 1976

IEEE Publication 76 CH1130-4 PWR Transient Response of Current Transformers

IEEE Protective Relay Committee Transient Response of Current Transformers IEEE Publication 76CH1130-4 PWR

Electric Utility Engineering Reference Book: Vol. 3, Distribution Systems Trafford, PA: Westinghouse Electric Corporation, 1965

Applications

3500 Scarlet Oak Blvd.St. Louis MO USA 63122 V: 636-343-8518 F: 636-343-5119Web: http://www.crmagnetics.com160E-mail: sales@crmagnetics.com

 3500 Scarlet Oak Blvd.
 St. Louis MO
 USA
 63122
 V: 636-343-8518
 F: 636-343-5119

 Web: http://www.crmagnetics.com
 161
 E-mail: sales@crmagnetics.com

CR Magnetics, Inc. has been in operation since 1986, and is centrally located in St. Louis, Missouri, where we maintain a 40,000 square foot manufacturing facility and warehouse. CR Magnetics also maintains manufacturing and sales offices worldwide, including East Asia, Europe, and the Americas. CR Magnetics philosophy is to provide a complete line of products and components that enables our customers to solve the challenges they face in an ever changing competitive environment. With rising energy costs and shrinking margins, maintaining efficiencies of operations, processes, and capital equipment is of utmost concern to today's Industrial and Equipment Engineer. We strive to provide the most cost effective and sophisticated products available, and also provide expert engineering assistance when our customers are faced with tough applications.

CURRENT 111111111111150 **Current Transformers** Indicators **Sensing Relays Custom Packages Digital Transducers** Displays

Electrical Systems Measurement and Monitoring Products

The Professional Energy Monitoring Company。

3500 Scarlet Oak Blvd., St. Louis, MO 63122 Phone: 636-343-8518, Fax: 636-343-5119 Web: http://www.crmagnetics.com E-mail: sales@crmagnetics.com

ISO 9001:2008 Quality Management System